期刊论文详细信息
BMC Evolutionary Biology
Phylogeography and postglacial expansion of the endangered semi-aquatic mammal Galemys pyrenaicus
Jose Castresana1  Joaquim Gosálbez3  Rocío Alonso1  Asunción Gómez4  Jorge González-Esteban2  Angel Fernández-González6  Pere Aymerich3  Javier Igea5 
[1] Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain;Desma Estudios Ambientales S.L, Ukulu 11, Sunbilla, Navarra 31791, Spain;Departament de Biologia Animal, Universitat de Barcelona, Avinguda Diagonal;Tragsatec, Área de Biodiversidad, Calle Julián Camarillo 6, Madrid 28037, Spain;Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK;Biosfera Consultoría Medioambiental S.L, Calle Candamo 5, Oviedo 33012, Spain
关键词: Endemism;    Iberian Peninsula;    Niche modeling;    Pyrenean desman;    Nuclear genes;    Mitochondrial genes;    Mammals;    Introns;    Conservation genetics;   
Others  :  1087193
DOI  :  10.1186/1471-2148-13-115
 received in 2012-12-17, accepted in 2013-05-28,  发布年份 2013
PDF
【 摘 要 】

Background

Species with strict ecological requirements may provide new insights into the forces that shaped the geographic variation of genetic diversity. The Pyrenean desman, Galemys pyrenaicus, is a small semi-aquatic mammal that inhabits clean streams of the northern half of the Iberian Peninsula and is endangered in most of its geographic range, but its genetic structure is currently unknown. While the stringent ecological demands derived from its aquatic habitat might have caused a partition of the genetic diversity among river basins, Pleistocene glaciations would have generated a genetic pattern related to glacial refugia.

Results

To study the relative importance of historical and ecological factors in the genetic structure of G. pyrenaicus, we used mitochondrial and intronic sequences of specimens covering most of the species range. We show, first, that the Pyrenean desman has very low levels of genetic diversity compared to other mammals. In addition, phylogenetic and dating analyses of the mitochondrial sequences reveal a strong phylogeographic structure of a Middle Pleistocene origin, suggesting that the main lineages arose during periods of glacial isolation. Furthermore, both the spatial distribution of nuclear and mitochondrial diversity and the results of species distribution modeling suggest the existence of a major glacial refugium in the northwestern part of the Iberian Peninsula. Finally, the main mitochondrial lineages show a striking parapatric distribution without any apparent exchange of mitochondrial haplotypes between the lineages that came into secondary contact (although with certain permeability to nuclear genes), indicating incomplete mixing after the post-glacial recolonization. On the other hand, when we analyzed the partition of the genetic diversity among river basins, the Pyrenean desman showed a lower than expected genetic differentiation among main rivers.

Conclusions

The analysis of mitochondrial and intronic markers in G. pyrenaicus showed the predominant effects of Pleistocene glaciations on the genetic structure of this species, while the distribution of the genetic diversity was not greatly influenced by the main river systems. These results and, particularly, the discovery of a marked phylogeographic structure, may have important implications for the conservation of the Pyrenean desman.

【 授权许可】

   
2013 Igea et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116023711889.pdf 2385KB PDF download
Figure 9. 33KB Image download
Figure 8. 155KB Image download
Figure 7. 51KB Image download
Figure 6. 73KB Image download
Figure 5. 28KB Image download
Figure 4. 46KB Image download
Figure 3. 39KB Image download
Figure 2. 30KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Avise JC: Phylogeography: the history and formation of species. Cambridge, Massachusetts: Harvard University Press; 2000.
  • [2]Chan LM, Brown JL, Yoder AD: Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol Phylogenet Evol 2011, 59:523-537.
  • [3]Knowles LL: Statistical phylogeography. Annu Rev Ecol Evol Syst 2009, 40:593-612.
  • [4]Hewitt G: The genetic legacy of the Quaternary ice ages. Nature 2000, 405:907-913.
  • [5]Shafer ABA, Cullingham CI, Côté SD, Coltman DW: Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 2010, 19:4589-4621.
  • [6]Gómez A, Lunt DH: Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia. Edited by Weiss S, Ferrand N. Amsterdam: Springer; 2007:155-188.
  • [7]Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF: Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 1998, 7:453-464.
  • [8]Shafer ABA, Côté SD, Coltman DW: Hot spots of genetic diversity descended from multiple Pleistocene refugia in an alpine ungulate. Evolution 2011, 65:125-138.
  • [9]Palmeirim JM, Hoffmann RS: Galemys pyrenaicus. Mammalian Species 1983, 207:1-5.
  • [10]Richard B: Le desman des Pyrénées, un mammifère inconnu à découvrir. Monaco: Le Rocher; 1985.
  • [11]Nores C, Queiroz AI, Gisbert J: Galemys pyrenaicus (E. Geoffroy Saint-Hilaire, 1811). In Atlas y libro rojo de los mamíferos terrestres de España. Edited by Palomo LJ, Gisbert J, Blanco JC. Madrid: Dirección General para la Biodiversidad - SECEM - SECEMU; 2007:92-98.
  • [12]Fernandes M, Herrero J, Aulagnier S, Amori G: Galemys pyrenaicus. IUCN Red list of threatened species version 2012–2 2008. http://www.iucnredlist.org webcite
  • [13]McKenna MC, Bell SK, Simpson GG: Classification of mammals above the species level. New York: Columbia University Press; 1997.
  • [14]Rümke CG: A review of fossil and recent Desmaninae (Talpidae, Insectivora). Utrecht Micropal Bull Sp Publ 1985, 4:1-241.
  • [15]Fortelius M: New and Old Worlds Database of Fossil Mammals (NOW). University of Helsinki; 2012. http://www.helsinki.fi/science/now/ webcite
  • [16]Cabria MT, Rubines J, Gómez-Moliner B, Zardoya R: On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (Galemys pyrenaicus). Gene 2006, 375:1-13.
  • [17]Colangelo P, Bannikova AA, Krystufek B, Lebedev VS, Annesi F, Capanna E, Loy A: Molecular systematics and evolutionary biogeography of the genus Talpa (Soricomorpha: Talpidae). Mol Phylogenet Evol 2010, 55:372-380.
  • [18]Aymerich P, Casadesús F, Gosálbez J: Distribució de Galemys pyrenaicus (Insectivora, Talpidae) a Catalunya. Orsis 2001, 16:93-110.
  • [19]González-Esteban J, Castién E, Gosálbez J: Morphological and colour variation in the Pyrenean desman Galemys pyrenaicus (Geoffroy, 1811). Z Säugetierkunde 1999, 64:1-11.
  • [20]Juckwer EA: Galemys pyrenaicus (Geoffroy, 1811) – Pyrenäen-Desman. In Handbuch der Säugetiere Europas: Insektenfresser, Herrentiere. Edited by Niethammer J, Krapp F. Wiesbaden: Aula Verlag; 1990:79-92.
  • [21]López-Fuster MJ, García-Perea R, Fernández-Salvador R, Gisbert J, Ventura J: Craniometric variability of the Iberian desman, Galemys pyrenaicus (Mammalia: Erinaceomorpha: Talpidae). Folia Zool 2006, 55:29-42.
  • [22]Queiroz AI, Quaresma CM, Santos CP, Barbosa A, Carvalho H: Desman distribution in Portugal. Current knowledge. In Council of Europe Environmental Encounters Series, N° 25.. Strasbourg: Council of Europe Publishing; 1996:19-27.
  • [23]Serre D, Pääbo S: Evidence for gradients of human genetic diversity within and among continents. Genome Res 2004, 14:1679-1685.
  • [24]Igea J, Juste J, Castresana J: Novel intron markers to study the phylogeny of closely related mammalian species. BMC Evol Biol 2010, 10:369. BioMed Central Full Text
  • [25]Melero Y, Aymerich P, Luque-Larena JJ, Gosálbez J: New insights into social and space use behaviour of the endangered Pyrenean desman (Galemys pyrenaicus). Eur J Wildl Res 2012, 58:185-193.
  • [26]Stone RD: The social ecology of the Pyrenean desman (Galemys pyrenaicus) (Insectivora: Talpidae), as revealed by radiotelemetry. J Zool 1987, 212:117-129.
  • [27]Sambrook J, Fritsch E, Maniatis T: Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.
  • [28]Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M: Genetic analyses from ancient DNA. Annu Rev Genet 2004, 38:645-679.
  • [29]Wandeler P, Hoeck PEA, Keller LF: Back to the future: museum specimens in population genetics. Trends Ecol Evol 2007, 22:634-642.
  • [30]Römpler H, Dear PH, Krause J, Meyer M, Rohland N, Schöneberg T, Spriggs H, Stiller M, Hofreiter M: Multiplex amplification of ancient DNA. Nat Protoc 2006, 1:720-728.
  • [31]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
  • [32]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
  • [33]Salzburger W, Ewing GB, Von Haeseler A: The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 2011, 20:1952-1963.
  • [34]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [35]Swofford DL: PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland: Massachusetts: Sinauer Associates; 2003.
  • [36]Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981, 17:368-376.
  • [37]Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25:1451-1452.
  • [38]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
  • [39]Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147:915-925.
  • [40]Ramos-Onsins SE, Rozas J: Statistical properties of new neutrality tests against population growth. Mol Biol Evol 2002, 19:2092-2100.
  • [41]Excoffier L, Lischer HE: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010, 10:564-567.
  • [42]Miller MP: Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 2005, 96:722-724.
  • [43]Monmonier MS: Maximum-difference barriers: an alternative numerical regionalization method. Geographical Analysis 1973, 5:245-261.
  • [44]Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ: Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 2011, 334:521-524.
  • [45]Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I, McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GR, Ruffier M, Schuster M, et al.: Ensembl 2011. Nucleic Acids Res 2011, 39:D800-D806.
  • [46]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008, 9:286-298.
  • [47]Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007, 56:564-577.
  • [48]Benton MJ, Donoghue PCJ, Asher RJ: Calibrating and constraining molecular clocks. In The timetree of life. Edited by Hedges SB, Kumar S. Oxford, New York: Oxford University Press; 2009:35-86.
  • [49]Warnock RCM, Yang Z, Donoghue PCJ: Exploring uncertainty in the calibration of the molecular clock. Biol Lett 2012, 8:156-159.
  • [50]Drummond AJ, Ho SYW, Phillips MJ, Rambaut A: Relaxed phylogenetics and dating with confidence. PLoS Biol 2006, 4:e88.
  • [51]S.F.E.P.M: Atlas des mammifères sauvages de France. Paris: Societe Francaise pour I'Etude et la Protection des Mammifères; 1984.
  • [52]Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ: A statistical explanation of MaxEnt for ecologists. Divers Distrib 2011, 17:43-57.
  • [53]Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 2005, 25:1965-1978.
  • [54]Phillips SJ, Anderson RP, Schapire RE: Maximum entropy modeling of species geographic distributions. Ecol Model 2006, 190:231-259.
  • [55]Phillips SJ, Dudik M: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 2008, 31:161-175.
  • [56]Alvarez-Lao DJ, Garcia N: Chronological distribution of Pleistocene cold-adapted large mammal faunas in the Iberian Peninsula. Quatern Int 2010, 212:120-128.
  • [57]Hernandez-Roldan JL, Murria C, Romo H, Talavera G, Zakharov E, Hebert PDN, Vila R: Tracing the origin of disjunct distributions: a case of biogeographical convergence in Pyrgus butterflies. J Biogeogr 38:2006-2020.
  • [58]Meirmans PG: The trouble with isolation by distance. Mol Ecol 2012, 21:2839-2846.
  • [59]Hewitt G: Postglacial recolonization of European biota. Biol J Linn Soc 1999, 68:87-112.
  • [60]Moritz C, Hoskin CJ, MacKenzie JB, Phillips BL, Tonione M, Silva N, VanDerWal J, Williams SE, Graham CH: Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc R Soc B 2009, 276:1235-1244.
  • [61]Sanchez-Gracia A, Castresana J: Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals. PLoS One 2012, 7:e30239.
  • [62]Gissi C, Reyes A, Pesole G, Saccone C: Lineage-specific evolutionary rate in mammalian mtDNA. Mol Biol Evol 2000, 17:1022-1031.
  • [63]Bininda-Emonds OR: Fast genes and slow clades: comparative rates of molecular evolution in mammals. Evol Bioinform 2007, 3:59-85.
  • [64]Ho SYW, Phillips MJ, Cooper A, Drummond AJ: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 2005, 22:1561-1568.
  • [65]Herman JS, Searle JB: Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc R Soc B 2011, 278:3601-3607.
  • [66]Mcdevitt AD, Zub K, Kawalko A, Oliver MK, Herman JS, Wójcik JM: Climate and refugial origin influence the mitochondrial lineage distribution of weasels (Mustela nivalis) in a phylogeographic suture zone. Biol J Linn Soc 2012, 106:57-69.
  • [67]Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C: The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 2003, 72:659-670.
  • [68]Emerson BC: Alarm bells for the molecular clock? No support for Ho et al.’s model of time-dependent molecular rate estimates. Syst Biol 2007, 56:337-345.
  • [69]Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ: Evidence for time dependency of molecular rate estimates. Syst Biol 2007, 56:515-522.
  • [70]Tuffley C, Timothy W, White J, Hendy MD, Penny D: Correcting the apparent mutation rate acceleration at shorter time scales under a Jukes-Cantor model. Mol Biol Evol 2012, 29:3703-3709.
  • [71]Soubrier J, Steel M, Lee MSY, Der Sarkissian C, Guindon S, Ho SYW, Cooper A: The influence of rate heterogeneity among sites on the time dependence of molecular rates. Mol Biol Evol 2012, 29:3345-3358.
  • [72]Alexandrino J, Froufe E, Arntzen JW, Ferrand N: Genetic subdivision, glacial refugia and postglacial recolonization in the golden-striped salamander, Chioglossa lusitanica (Amphibia: urodela). Mol Ecol 2000, 9:771-781.
  • [73]Arribas O: Fauna y Paisaje de Los Pirineos en la Era Glaciar. Barcelona: Lynx Edicions; 2004.
  • [74]Aymerich P, Gosálbez J: Factors de distribució de Galemys pyrenaicus (Insectivora, Talpidae) a Catalunya. Orsis 2002, 17:21-35.
  • [75]Deffontaine V, Ledevin R, Fontaine MC, Quere JP, Renaud S, Libois R, Michaux JR: A relict bank vole lineage highlights the biogeographic history of the Pyrenean region in Europe. Mol Ecol 2009, 18:2489-2502.
  • [76]Yannic G, Basset P, Hausser J: A new perspective on the evolutionary history of western European Sorex araneus group revealed by paternal and maternal molecular markers. Mol Phylogenet Evol 2008, 47:237-250.
  • [77]Magri D: Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 2008, 35:450-463.
  • [78]Ribera I, Castro A, Díaz JA, Garrido J, Izquierdo A, Jäch MA, Valladares LF: The geography of speciation in narrow-range endemics of the ‘Haenydra’ lineage (Coleoptera, Hydraenidae, Hydraena). J Biogeogr 2011, 38:502-516.
  • [79]Vega R, Fløjgaard C, Lira-Noriega A, Nakazawa Y, Svenning J-C, Searle JB: Northern glacial refugia for the pygmy shrew Sorex minutus in Europe revealed by phylogeographic analyses and species distribution modelling. Ecography 2010, 33:260-271.
  • [80]Yannic G, Dubey S, Hausser J, Basset P: Additional data for nuclear DNA give new insights into the phylogenetic position of Sorex granarius within the Sorex araneus group. Mol Phylogenet Evol 2010, 57:1062-1071.
  • [81]Paupério J, Herman JS, Melo-Ferreira J, Jaarola M, Alves PC, Searle JB: Cryptic speciation in the field vole: a multilocus approach confirms three highly divergent lineages in Eurasia. Mol Ecol 2012, 21:6015-6032.
  • [82]Martínez-Solano I, Teixeira J, Buckley D, García-París M: Mitochondrial DNA phylogeography of Lissotriton boscai (Caudata, Salamandridae): evidence for old, multiple refugia in an Iberian endemic. Mol Ecol 2006, 15:3375-3388.
  • [83]Godinho R, Crespo EG, Ferrand N: The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol Ecol 2008, 17:4670-4683.
  • [84]Gonçalves H, Martinez-Solano I, Pereira RJ, Carvalho B, García-París M, Ferrand N: High levels of population subdivision in a morphologically conserved Mediterranean toad (Alytes cisternasii) result from recent, multiple refugia: evidence from mtDNA, microsatellites and nuclear genealogies. Mol Ecol 2009, 18:5143-5160.
  • [85]Centeno-Cuadros A, Delibes M, Godoy JA: Phylogeography of Southern Water Vole (Arvicola sapidus): evidence for refugia within the Iberian glacial refugium? Mol Ecol 2009, 18:3652-3667.
  • [86]Mucci N, Arrendal J, Ansorge H, Bailey M, Bodner M, Delibes M, Ferrando A, Fournier P, Fournier C, Godoy JA, Hajkova P, Hauer S, Heggberget TM, Heidecke D, Kirjavainen H, Krueger H-H, Kvaloy K, Lafontaine L, Lanszki J, Lemarchand C, Liukko U-M, Loeschcke V, Ludwig G, Madsen AB, Mercier L, Ozolins J, Paunovic M, Pertoldi C, Piriz A, Prigioni C, et al.: Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conserv Genet 2010, 11:583-599.
  • [87]Swenson NG, Howard DJ: Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am Nat 2005, 166:581-591.
  • [88]Johansson H, Surget-Groba Y, Thorpe RS: The roles of allopatric divergence and natural selection in quantitative trait variation across a secondary contact zone in the lizard Anolis roquet. Mol Ecol 2008, 17:5146-5156.
  • [89]Waits L, Taberlet P, Swenson JE, Sandegren F, Franzén R: Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol 2000, 9:421-431.
  • [90]Miraldo A, Hewitt GM, Paulo OS, Emerson BC: Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evol Biol 2011, 11:170. BioMed Central Full Text
  • [91]Recuero E, García-París M: Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol Phylogenet Evol 2011, 60:170-182.
  • [92]Waters JM: Competitive exclusion: phylogeography’s ‘elephant in the room’? Mol Ecol 2011, 20:4388-4394.
  • [93]Pelletier A, Obbard ME, White BN, Doyle C, Kyle CJ: Small-scale genetic structure of American black bears illustrates potential postglacial recolonization routes. J Mammal 2011, 92:629-644.
  • [94]Nater A, Nietlisbach P, Arora N, van Schaik CP, van Noordwijk MA, Willems EP, Singleton I, Wich SA, Goossens B, Warren KS, Verschoor EJ, Perwitasari-Farajallah D, Pamungkas J, Krützen M: Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant Orangutans (genus: Pongo). Mol Biol Evol 2011, 28:2275-2288.
  • [95]Novembre J, Ramachandran S: Perspectives on human population structure at the cusp of the sequencing era. Annu Rev Genomics Hum Genet 2011, 12:245-274.
  • [96]Nabholz B, Mauffrey JF, Bazin E, Galtier N, Glemin S: Determination of mitochondrial genetic diversity in mammals. Genetics 2008, 178:351-361.
  • [97]Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB: Predicting the probability of outbreeding depression. Conserv Biol 2011, 25:465-475.
  文献评价指标  
  下载次数:10次 浏览次数:5次