期刊论文详细信息
BMC Complementary and Alternative Medicine
Evaluation of antinociceptive effect of methanolic extract of leaves of Crataeva nurvala Buch.-Ham.
Mohammad Zafar Imam2  Md Moniruzzaman1 
[1] College of Pharmacy, Dongguk University, Goyang 410-820, Republic of Korea;Department of Pharmacy, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka 1217, Bangladesh
关键词: Medicinal plants;    Glutamatergic system;    Opioid system;    Capparidaceae;    Crataeva nurvala;    Antinociceptive;   
Others  :  1086568
DOI  :  10.1186/1472-6882-14-354
 received in 2014-05-16, accepted in 2014-09-19,  发布年份 2014
PDF
【 摘 要 】

Background

Crataeva nurvala Buch.-Ham. (Family: Capparidaceae) is widely used as anti-inflammatory, contraceptive, laxative, lithotropic, febrifuge and as tonic in traditional medicine. This study evaluated the antinociceptive effect of the methanolic extract of the leaves of Crataeva nurvala (MECN).

Methods

The antinociceptive activity was investigated using heat-induced (hot-plate and tail-immersion test) and chemical-induced (acetic acid, formalin and glutamic acid) nociception models in mice at different doses (50, 100, and 200 mg/kg, p.o.) of MECN. Morphine sulphate (5 mg/kg, i.p.) and diclofenac sodium (10 mg/kg, i. p.) were used as reference analgesic drugs.

Results

MECN produced significant dose-dependent antinociception when assessed using hot plate test, tail immersion test and acetic acid-induced abdominal writhing test (65.55%). Likewise, MECN at similar doses produced significant dose-dependent inhibition in both neurogenic (50.82%) and inflammatory pain (73.53%) induced by intraplantar injection of formalin (2.5% formalin, 20 μl/paw). Besides, MECN also significantly inhibited the glutamate-induced (10 μM/paw) pain in mice (74.68%). It was demonstrated that pretreatment with naloxone (2 mg/kg, i.p.) significantly reversed antinociception produced by MECN in hot plate and tail immersion test suggesting the involvement of opioid receptor. In addition, administration of glibenclamide (10 mg/kg, i.p.), an ATP-sensitive K+ channel antagonist could not reverse antinociceptive activity induced by MECN.

Conclusion

The results suggest that MECN possesses antinociceptive activity involving inhibition of opioid system as well as the glutamatergic system supporting its traditional uses.

【 授权许可】

   
2014 Moniruzzaman and Imam; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116013026795.pdf 205KB PDF download
【 参考文献 】
  • [1]Kirtikar KR, Basu BD: Indian Medicinal Plants. 2nd edition. Dehradun: International Book Publisher; 2005.
  • [2]Ghani A: Medicinal Plant of Bangladesh with Chemical Constituents and Uses. 2nd edition. Dhaka: Asiatic Society of Bangladesh; 1998.
  • [3]Bhattacharjee A, Shashidhara SC, Aswathanarayana : Phytochemical and ethno-pharmacological profile of Crataeva nurvala Buch-Hum (Varuna): a review. Asian Pac J Trop Biomed 2012, 2:S1162-S1168.
  • [4]Gagandeep M, Kalidhar SB: Chemical constituents of Crataeva nurvala (Buch.-Ham.) leaves. Ind J Pharm Sci 2006, 68:804-806.
  • [5]Khattar V, Wal A: Utilities of Crataeva nurvala. Int J Pharm Pharmaceut Sci 2012, 4:21-26.
  • [6]Geetha T, Varalakshmi P, Latha RM: Effect of triterpenes from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats. Pharmacol Res 1998, 37:191-195.
  • [7]Shirwaikar A, Setty M, Bommu P: Effect of lupeol isolated from Crataeva nurvala Buch.-Ham. stem bark extract against free radical induced nephrotoxicity in rats. Ind J Exp Biol 2004, 42:686-690.
  • [8]Sikarwar MS, Patil MB: Antidiabetic activity of Crateva nurvala stem bark extracts in alloxan-induced diabetic rats. J Pharm Bioall Sci 2010, 2:18-21.
  • [9]Walker CIB, Trevisan G, Rossato MF, Franciscato C, Pereirac ME, Ferreira J, Manfron MP: Antinociceptive activity of Mirabilis jalapa in mice. J Ethnopharmacol 2008, 120:169-175.
  • [10]Eddy NB, Leimbach D: Synthetic analgesics: II. Dithienylbutinyl and Dithienylbutylamines. J Pharmacol Exp Ther 1953, 107:385-393.
  • [11]D’Amour FE, Smith DL: A method for determining loss of pain sensation. J Pharmacol Exp Ther 1941, 72:74-79.
  • [12]Sulaiman MR, Mohamad TAT, Mossadek WMS, Moin S, Yusof M, Mokhtar AF, Zakaria ZA, Israf DA, Lajis N: Antinoceciptive activity of the essential oil of Zingiber zerumbet. Planta Med 2010, 76:107-112.
  • [13]Santos ARS, Calixto JB: Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997, 31:381-389.
  • [14]Santos ARS, Miguel OG, Yunes RA, Calixto JB: Antinociceptive properties of the new alkaloid, cis-8, 10-di-N-propyllobelidiol hydrochloride dihydrate isolated from Siphocampylus verticillatus: Evidence for the mechanism of action. J Pharmacol Exp Ther 1999, 289:417-426.
  • [15]Beirith A, Santos ARS, Calixto JB: Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Res 2002, 924:219-228.
  • [16]Khan H, Saeed M, Gilani AUH, Khan MA, Khan I, Ashraf N: Antinociceptive activity of aerial parts of Polygonatum verticillatum: Attenuation of both peripheral and central pain mediators. Phytother Res 2011, 25:1024-1030.
  • [17]Mohamad AS, Akhtar MN, Khalivulla SI, Perimal EK, Khalid MH, Ong HM, Zareen S, Akira A, Israf DA, Lajis N, Sulaiman MR: Possible participation of nitric oxide/cyclic guanosine monophosphate/protein kinase C/ATP-sensitive K(+) channels pathway in the systemic antinociception of Flavokawin B. Basic Clin Pharmacol Toxicol 2011, 108:400-405.
  • [18]Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, Tatt LM, Kamaldin MN, Zakaria ZA, Israf DA, Lajis N, Sulaiman MR: Zerumbone-induced antinociception: Involvement of the l-argininenitric oxide-cGMP-PKC-K+ ATP channel pathways. Basic Clin Pharmacol Toxicol 2011, 108:155-162.
  • [19]Hiruma-Lima CA, Gracioso JS, Bighetti EJB, Germonsen-Robineou L, Souza-Brito ARM: The juice of the fresh leaves of Boerhaavia diffusa L. (Nyctaginaceae) markedly reduces pain in mice. J Ethnopharmacol 2000, 71:267-274.
  • [20]Turner RA: Screening Methods in Pharmacology. New York: Academic Press; 1965:158.
  • [21]Choi J, Kyung-Tae L, Sei-Young Y, Chang-Duk K, Hyun-Ju J, Hee-Juhn P: Antinociceptive and antiinflammatory effects of Nigaichigoside F1 and 23- hydroxyl tormentic acid obtained from Rubus coreanus. Biol Pharm Bull 2003, 26:1436-1441.
  • [22]Koster R, Anderson M, De-Beer EJ: Acetic acid for analgesic screening. Fed Proc 1959, 18:412.
  • [23]Sanchez-Mateo CC, Bonkanka CX, Hernandez-Perez M, Rabanal RM: Evaluation of the analgesic and topical anti-inflammatory effects of Hypericum reflexum L. fil. J Ethnopharmacol 2006, 107:1-6.
  • [24]Julius D, Basbaum AI: Molecular mechanisms of nociception. Nature 2001, 413:203-210.
  • [25]Tjølsen A, Berge OG, Hunskaar S, Rosland JH, Hole K: The formalin test: an evaluation of the method. Pain 1992, 51:5-17.
  • [26]Correa CR, Calixto JB: Evidence for participation of B1and B2 kinin receptor in formalin induced nociceptive response in mouse. British J Pharmacol 1993, 110:193-198.
  • [27]Lapa JA, Souccar C, Lima-Landman MTR, Castro MSA, Lima TCM: Metodos de avaliacao da atividade farmacologica de plantas medicinais. Sociedade Brasileira de Plantas Medicinais 2003, 64-66.
  • [28]Sakurada T, Matsumura T, Moriyama T, Sakurada C, Ueno S, Sakurada S: Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice. Pharmacol Biochem Behav 2003, 75:115-121.
  • [29]Jinsmaa Y, Okada Y, Tsuda Y, Sasak Y, Ambo A, Bryant SD, Lazarus LH: Novel 2’, 6’-dimethyl-L-tyrosine-containing pyrazinone opioid mimetic μ-agonists with potent antinociceptive activity in mice. J Pharmacol Exp Ther 2004, 309:432-438.
  • [30]Jinsmaa Y, Fujitab Y, Shiotanib K, Miyazakic A, Lib T, Tsuda Y, Okada Y, Amboe A, Sasakie Y, Bryanta SD, Lawrence H, Lazarus LH: Differentiation of opioid receptor preference by [Dmt1] endomorphin- 2-mediated antinociception in the mouse. Eur J Pharmacol 2005, 509:37-42.
  文献评价指标  
  下载次数:5次 浏览次数:16次