期刊论文详细信息
BMC Systems Biology
CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism
Hermann-Georg Holzhütter2  Vera Regitz-Zagrosek1  Hugo Sanchez Ruderisch1  Georgios Kararigas1  Daniela Fliegner1  Anja Karlstädt2 
[1] Center for Cardiovascular Research, Charité-Universitätsmedizin Berlin, 10115 Berlin, Hessische Straße 3-4, Germany;Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Charitéplatz 1/ Virchowweg 6, Germany
关键词: Metabolism;    Efficency;    Cardiomyocyte;    Heart;    Flux balance;    Computational biology;   
Others  :  1143660
DOI  :  10.1186/1752-0509-6-114
 received in 2012-05-13, accepted in 2012-08-16,  发布年份 2012
PDF
【 摘 要 】

Background

Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output.

Results

Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes.

Conclusions

CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.

【 授权许可】

   
2012 Karlstädt et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150329171225160.pdf 3106KB PDF download
【 参考文献 】
  • [1]World Health Organization (WHO): Global Status Report on Noncommunicable Diseases 2010—Description of the Global Burden of NCDs, Their Risk Factors and Determinants. Geneva, Switzerland: WHO:2011; [http://whqlibdoc.who.int/publications/2011/9789240686458_eng.pdf webcite. Accessed April 4, 2012]
  • [2]Duarte C, Becker S, Jamshidi N, Thiele I, Mo M, Vo T, Srivas R, Palsson B: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Procl Natl Acad Sci 2007, 104:1777-1782.
  • [3]Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, Goryanin I: The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 2007, 3:135.
  • [4]Gille C, Bölling C, Hoppe A, Bulik S, Hoffmann S, Hübner K, Karlstädt A, Ganeshan R, König M, Rother K, Weidlich M, Behre J, Holzhütter H: HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol Syst Biol 2010, 6:1-13.
  • [5]Holzhütter H: The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 2004, 271:2905-2922.
  • [6]Shlomi T, Cabili M, Herrgård M, Palsson B, Ruppin E: Network-based prediction of human tissue-specific metabolism. Nature Biotechnol 2008, 26:1003-1010.
  • [7]Becker S, Feist A, Mo M, Hannum G, Palsson B, Herrgård M: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2007, 2:727-338.
  • [8]Mo M, Palsson B, Herrgård M: Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009, 3:37. BioMed Central Full Text
  • [9]Neely J, Morgan H: Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974, 36:413-459.
  • [10]Doenst T, Goodwin G, Cedars A, Wang M, Stepkowski S, Taegtmeyer H: Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro. Metabolism 2001, 50:1083-1090.
  • [11]Foryst-Ludwig A, Kreissl M, Sprang C, Thalke B, Böhm C, Benz V, Gürgen D, Dragun D, Schubert C, Mai K, Stawowy P, Spranger J, Regitz-Zagrosek V, Unger T, Kintscher U: Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol Heart Circ Physiol 2011, 301:H115-H122.
  • [12]Jezkova J, Novakova O, Kolar F, Tvrzicka E, Neckar J, Novak F: Chronic hypoxia alters fatty acid composition of phospholipids in right ventricular mycoardium. Mol Cell Biochem 2002, 232:49-56.
  • [13]Pepe S, McLennan P: Cardiac membrane fatty acid composition modulates myocardial oxygen consumption and postischemic recovery of contractile function. Circulation 2002, 105:2303-2308.
  • [14]Bordoni A, Lopez-Jimenez J, Spano C, Biagi P, Horrobin D, Hrelia D: Metabolism of linoleic and alpha-linolenic acids in cultured cardiomyocytes:effect of different N-6 and N-3 fatty acid supplementation. Mol Cell Biochem 1996, 157:217-222.
  • [15]Siscovick D, Raghunathan T, King I, Weinmann S, Wicklund K, Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi L: Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. JAMA 1995, 274:1363-1367.
  • [16]Bei R, Frigiola A, Masuelli L, Marzocchella L, Tresoldi I, Modesti A, Galvano F: Effects of omega-3-polyunsaturated fatty acids on cardiac myocyte protection. Front Biosci 2011, 16:1833-1843.
  • [17]Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin M, Morio B, Vidal H, Rieusset J: Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 2008, 118:789-800.
  • [18]Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, Sun C, Liu X, Jefferson L, Xiong J, Lanoue K, Chang Z, Lynch C, Wang H, Shi Y: Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab 2010, 12:154-165.
  • [19]Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero F: Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 2004, 94:53-59.
  • [20]Beyer K, Klingenberg M: ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 1985, 24:3821-386.
  • [21]Acehan D, Malhota A, Xu Y, Ren M, Stokes D, Schlame M: Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J 2011, 100:2184-2192.
  • [22]Stankiewics-Choroszucha B, Gorski J: Effect of substrate supply and beta-adrenergic blockage on heart glycogen and triglyceride utilization during exercise in the rat. Eur J Appl Physiol Occup Physiol 1980, 43:11-7.
  • [23]Smith A, Robinson A: A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC Syst Biol 2011, 5:102. BioMed Central Full Text
  • [24]Vo T, Greenberg H, Palsson B: Reconstruction and Functional Characterization of the Human Mitochondrial Metabolic Network Based on Proteomic and Biochemical Data. J Biol Chem 2004, 279:39532-39540.
  • [25]Zhao Y, Huang J: Reconstruction and analysis of the human heart-specific metabolic network based on transcriptome and proteome data. Biochem Biophys Res Commun 2011, 415:450-454.
  • [26]Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz C, Shimizu T, Spener F, van Meer G, Wakelam M, Dennis E: Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 2009, 50:S9-S14.
  • [27]Wishart D, Knox C, Guo A, Eisner R, Young N, Gautam B, Hau D, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz J, Lim E, Sobsey C, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel H, Forsythe I: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 2009, 37:D603-D610.
  • [28]Nascimben L, Ingwall JS, Lorell B, Piz I, Schultz V, Tornheim K, Tian R: Mechanisms for increased glycolysis in the hypertophied rat heart. Hypertension 2004, 44:662-667.
  • [29]Depre C, Rider M, Hue L: Mechanisms of control of heart glycolysis. Eur J Biochem 1998, 258:277-290.
  • [30]Bublitz C, Steavenson S: The pentose phosphate pathway in the endoplasmic reticulum. J Biol Chem 1988, 26:12849-12853.
  • [31]Severin S, Stepanova N: Interrelationship between glycolysis and the anaerobic part of the pentose phosphate pathway of carbohydrate metabolism in the myocardium. Adv Enzyme Regul 1980, 19:235-255.
  • [32]Puisac B, Arnedo M, Casale C, Ribate M, Castiella T, Ramos F, Ribes A, Pérez-Cerdá C, Casals N, Hegardt F, Pié J: Differential HMG-CoA lyase expression in human tissues provides clues about 3-hydroxy-3-methylglutaric aciduria. J Inherit Metab Dis 2010, 33:405-410.
  • [33]Avogaro A, Nosadini R, Doria A, Fioretto P, Velussi M, Vigorito C, Sacca L, Toffolo G, Cobelli C, Trevisan R: Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am J Physiol Endocrinol Metab 1990, 258:E606-E618.
  • [34]Hasin Y, Shimoni Y, Stein O, Stein Y: Effect of cholesterol depletion on the electrical activity of rat heart myocytes in culture. J Mol Cell Cardiol 1980, 12:675-683.
  • [35]Venter H, Genade S, Mouton R, Huisamen B, Harper I, Lochner A: Myocardial membrane cholesterol: effects of ischaemia. J Mol Cell Cardiol 1991, 11:1271-1286.
  • [36]Khairallah R, Sparagna G, Khanna N, O’Shea K, Hecker P, Kristian T, Fiskum G, Des Rosiers C, Polster B, Stanley W: Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta 2010, 1797:1555-1562.
  • [37]Miyazaki M, Jacobson M, Man W, Cohen P, Asilmaz E, Friedman J, Ntambi J: Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition. Biochim Biophys Acta 2010, 1797:1555-1562.
  • [38]Osorio J, Stanley W, Linke A, Castellari M, Diep Q, Panchal A, Hintze T, Lopaschuk G, Recchia F: Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failureK. Circulation 2002, 106:606-612.
  • [39]Goodwin G, Taegtmeyer H: Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am J Physiol 1999, 277:E772-E777.
  • [40]Awan M, Saggerson E: Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Biochem J 1993, 295:61-66.
  • [41]Bester R, Lochner A: Sarcolemmal phospholipid fatty acid composition and permeability. Biochim Biophys Acta 1988, 941:176-186.
  • [42]Stam H, Broekhoven-Schokker S, Hülsmann W: Characterization of mono-, di- and triacylglycerol lipase activities in the isolated rat heart. Biochimica et Biophysica Acta 1986, 875:76-86.
  • [43]Ardail D, Privat J, Egret-Charlier M, Levrat C, Lerme F, Louisot P: Mitochondrial contact sites: lipid composition and dynamics. J Biol Chem 1990, 265:18797-18802.
  • [44]Hofgaard J, Banach K, Mollerup S, Jorgensen H, Olesen S, Holstein-Rathlou N, Nielsen M: Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes. Eur J Physiol 2008, 457:303-313.
  • [45]Portois L, Peltier S, Sener A, Malaisse W, Carpentier Y: Perturbation of phospholipid and triacylglycerol fatty acid positional location in the heart of rats depleted of n-3 long-chain polyunsaturates. Nutr Res 2008, 28:51-57.
  • [46]Dobrzyn P, Dobrzyn A, Miyazaki M, Ntambi J: Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice. J Lipid Res 2010, 51:2202-2210.
  • [47]Turoczi T, Chang V, Engelman R, Maulik N, Ho Y, Das D: Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1. J Mol Cell Cardiol 2003, 35:695-704.
  • [48]Yamamoto M, Yang G, Hong C, Liu J, Holle E, Yu X, Wagner T, Vatner S, Sadoshima J: Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 2003, 112:1395-1406.
  • [49]Mudge GJ, Mills RJ, Taegtmeyer H, Gorlin R, Lesch M: Alterations of myocardial amino acid metabolism in chronic ischemic heart disease. J Clin Invest 1976, 58:1185-1192.
  • [50]Dinkelborg L, Kinne R, Grieshaber M: Transport and metabolism of L-glutamate during oxygenation, anoxia, and reoxygenation of rat cardiac myocytes. Am J Physiol 1996, 270:H1825-H1832.
  • [51]Kerner J, Hoppel C: Fatty acid import into mitochondria. Biochimica et Biophysica Acta 2000, 1486:1-17.
  • [52]Bremer J: Carnitine - Metabolism and functions. Physiol Rev 1983, 63(4):1420-1480.
  • [53]Hoffmann F, Hashimoto A, Lee B, Rose A, Shohet R, Hoffmann P: Specific antioxidant selenoproteins are induced in the heart during hypertrophy. Arch Biochem Biophys 2011, 512:38-44.
  • [54]Caldarera C, Orlandini G, Casti A, Moruzzi G: Polyamine and nucleic acid metabolism in myocardial hypertrophy of the overloaded heart. J Mol Cell Cardiol 1974, 6:95-103.
  • [55]Tantini B, Fiumana E, Cetrullo S, Pignatti C, Bonavita F, Shantz L, Giordano E, Muscari C, Flamigni F, Guarnieri C, Stefanelli C, Caldarera C: Downregulation of the ornithine decarboxylase/polyamine system inhibits angiotensin-induced hypertrophy of cardiomyocytes through the NO/cGMP-dependent protein kinase type-I pathway. J Mol Cell Cardiol 2006, 40:775-782.
  • [56]Waldmüller S, Erdmann J, Binner P, Gelbrich G, Pankuweit S, Geier C, Timmermann B, Haremza J, Perrot A, Scheer S, Wachter R, Schulze-Waltrup N, Dermintzoglou A, Schönberger J, Zeh W, Jurmann B, Brodherr T, Börgel J, Farr M, Milting H, Blankenfeldt W, Reinhardt R, Ozcelik C, Osterziel K, Loeffler M, Maisch B, Regitz-Zagrosek V, Schunkert H, Scheffold T: Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure. Eur J Heart Fail 2011, 13:1185-1192.
  • [57]Cheng Y, Li W, McElfresh T, Chen X, Berthiaume J, Castel L, Yu X, Van Wagoner D, Chandler M: Changes in myofilament proteins, but not calcium regulation, are associated with a high fat diet-induced improvement in contractile function in heart failure. Am J Physiol Heart Circ Physiol 2011, 301:H1438-H1446.
  • [58]Russell R, Bergeron R, Shulman G, Young L: Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 1999, 277:H643-649.
  • [59]Fox A, Reed G, Meilman H, Silk B: Release of nucleosides from canine and human hearts as an index of prior ischemia. Am J Cardiol 1979, 43:52-58.
  • [60]Reibel D, Rovetto M: Myocardial adenosine salvage rates and restoration of ATP content following ischemia. Am J Physiol 1979, 237:H247-H252.
  • [61]Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara J, Quaini E, Di Loreto C, Beltrami C, Krajewski S, Reed J, Anversa P: Apoptosis in the failing human heart. N Engl J Med 1997, 336:1131-1142.
  • [62]Achterberg P, Stroeve R, De Jong J: Myocardial adenosine cycling rates during normoxia and under conditions of stimulated purine release. Biochem J 1986, 235:13-17.
  • [63]Brown A, Raeside D, Bowditch J, Dow J: Metabolism and salvage of adenine and hypoxanthine by myocytes isolated from mature rat heart. Biochim Biophys Acta 1985, 845:469-476.
  • [64]Hatefi Y, Galante Y: Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria. Proc Natl Acad Sci USA 1977, 74:846-850.
  • [65]Hsu C, Oka S, Shao D, Hariharan N, Sadoshima J: Nicotinamide phosphoribosyltransferase regulates cell survival through NAD+ synthesis in cardiac myocytes. Circ Res 2009, 105:481-491.
  • [66]Vockley J, Jenkinson C, Shukla H, Kern R, Grody W, Cederbaum S: Cloning and characterization of the human type II arginase gene. Genomics 1996, 38:118-123.
  • [67]Heusch P, Aker S, Boengler K, Deindl E, Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, DiLisa F, Schulz R: Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/ nitrate production and protein S-nitrosylation. Am J Physiol Heart Circ Physiol 2010, 299:H446-H453.
  • [68]Jerby L, Shlomi T, Ruppin E: Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 2010, 6:401.
  • [69]Wu F, Zhang E, Zhang J, Bache R, Beard D: Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts. J Physiol 2008, 586.17:4193-4208.
  • [70]Taegtmeyer H, Hems R, Krebs H: Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 1980, 186:701-711.
  • [71]Stanacev N, Stuhne-Sekalec L, Brookes K, Davidson J: Intermediary metabolism of phospholipids. The biosynthesis of phosphatidylglycerophosphate and phosphatidylglycerol in heart mitochondria. Biochim Biophys Acta 1969, 176:650-653.
  • [72]Hatch G: Cardiolipin biosynthesis in the isolated heart. Biochem J 1994, 297:201-208.
  • [73]Rocquelin G, Guenot L, Justrabo E: Fatty acid composition of human heart phospholipids: data from 53 biopsy specimens. J Mol Cell Cardiol 1985, 17:769-773.
  • [74]Rocquelin G, Guenot L, Astorg P, David M: Phospholipid content and fatty acid composition of human heart. Lipids 1989, 24:775-780.
  • [75]Goodwin G, Taegtmeyer H: [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway. Am J Physiol 2001, 280:E502-E508.
  • [76]Ohno Y, Suto S, Yamanaka M, Mizutani Y, Mitsutake S, Igarashib Y, Sassaa T, Kiharaa A: ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. PNAS 2010, 107:18439-18444.
  • [77]Henning S, Wambolt R, Schönekess B, Lopaschuk G, Allard M: Contribution of glycogen to aerobic myocardial glucose utilization. Circulation 1996, 93:1459-1555.
  • [78]Hoffmann S, Hoppe A, Holzhütter H: Prunnig genome-scale metabolic models to consistent ad functionem networks. Genome Informatics 2007, 18:308-319.
  • [79]Niklas J, Heinzle E: Metabolic Flux Analysis in Systems Biology of Mammalian Cells. Adv Biochem Eng Biotechnol 2012, 127:109-132.
  • [80]Sauer U: Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2006, 2:62.
  • [81]Hoffmann S, Holzhütter H: Uncovering metabolic objectives pursued by changes of enzyme levels. Ann N Y Acad Sci 2009, 1158:57-70.
  • [82]Schuster S, Pfeiffer T, Fell D: Is maximization of molar yield in metabolic networks favoured by evolution? J Theo Biol 2007, 252:497-504.
  • [83]Wentz A, Avignin D, Weber M, Cotter D, Doherty J, Kerns R, Nagarajan R, Reddy N, Sambandam N, Crwford P: Adaption of myocardial substrate metabolism to a ketogenic nutrient environment. J Bio Chem 2010, 285:24447-24456.
  • [84]Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, Cao X: Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochem Biophys Res Commun 2002, 297:1033-1042.
  • [85]Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, Mohnsen AW, Isaya G, Vockley J: Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial-oxidation of unsaturated fatty acids. Biol Chem 2005, 280:32309-32316.
  • [86]Nada M, Abdel-Aleem S, Schulz H: On the rate-limiting step in the beta-oxidation of polyunsaturated fatty acids in the heart. Biochim Biophys Acta 1995, 1255:244-250.
  • [87]Boudina S, Sena S, Theobald H, Sheng X, Wright J, Hu X, Aziz S, Johnson J, Bugger H, Zaha V, Abel E: Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 2007, 56:2457-2466.
  • [88]Su A, Cooke M, Ching K, Hakak Y, Walker J, Wiltshire T, Orth A, Vega R, Sapinoso L, Moqrich A, Patapoutian A, Hampton G, Schultz P, Hogenesch J: Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 2002, 99(7):4465-4470.
  • [89]Barrett T, Edgar R: Gene Expression Omnibus: Microarray data storage, submission, retrieval, and analysis. Methods Enzymol 2006, 411:352-369.
  • [90]Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, et al, Lawson D: Ensembl 2009. Nucl Acids Res 2009, 37:D690-D697.
  • [91]Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28:27-30.
  • [92]Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söngen C, Stelzer MC, Thiele J, Schomburg D: BRENDA, the enzyme information system in 2011. Nucleic Acids Res 2011, 39:670-676.
  • [93]UniProt Consortium: Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 2011, 39:D214-D219.
  • [94]Saier M, Tran C, Barabote R: TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucl Acids Res 2006, 34:D181-D186.
  • [95]Vastrik I, D’Eustachio P, Schmidt E, Gopinath G, Croft D, de Bono B, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L: Reactome: a knowledge base of biologic pathways and processes. Genome Biol 2007, 28:R39.
  • [96]Galeva N, Altermann M: Comparison of one-dimensional and two-dimensional gel electrophoresis as a separation tool for proteomic analysis of rat liver microsomes: cytochromes P450 and other membrane proteins. Proteomics 2002, 2:713-722.
  • [97]Galeva N, Yakovlev D, Koen Y, Duzhak T, Altermann M: Direct identification of cytochrome P450 isozymes by matrix-assisted laser desorption/ionization time of flight-based proteomic approach. Drug Metab Dispos 2003, 31:351-355.
  • [98]Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V: Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 2008, 95:1487-1499.
  • [99]Gille C, Hoffmann S, Holzhütter H: METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol 2007, 1:5. BioMed Central Full Text
  • [100]Levkau B, Schäfers M, Wohlschlaeger J, von Wnuck Lipinski K, Keul P, Hermann S, Kawaguchi N, Kirchhof P, Fabritz L, Stypmann J, Stegger L, Flögel U, Schrader J, Fischer J, Hsieh P, Ou Y, Mehrhof F, Tiemann K, Ghanem A, Matus M, Neumann J, Heusch G, Schmid K, Conway E, Baba H: Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 2008, 117:1583-1593.
  • [101]Armstrong A, Binkley P, Baker P, Myerkowitz P, Leier C: Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation. J Am Coll Cardiol 1998, 32:704-710.
  • [102]Hoppe A, Hoffmann S, Gerasch A, Holzhütter H: FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics 2011, 12:28. BioMed Central Full Text
  文献评价指标  
  下载次数:5次 浏览次数:14次