期刊论文详细信息
BMC Microbiology
Transcriptional profile of Paracoccidioides induced by oenothein B, a potential antifungal agent from the Brazilian Cerrado plant Eugenia uniflora
Maristela Pereira1  Célia Maria de Almeida Soares1  Wellington Santos Martins2  Clayton Luiz Borges1  Pedro Henrique Ferri3  Suzana Costa Santos3  Patrícia Kott Tomazett1  Patrícia Fernanda Zambuzzi-Carvalho1 
[1]Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, C.P. 131, 74001-970 Goiânia, GO, Brazil
[2]Instituto de Informática, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
[3]Laboratório de Bioatividade Molecular, Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
关键词: Cell wall;    Transcriptome;    Oenothein B;    Antifungal;    Paracoccidioides;   
Others  :  1142893
DOI  :  10.1186/1471-2180-13-227
 received in 2013-08-27, accepted in 2013-10-01,  发布年份 2013
PDF
【 摘 要 】

Background

The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-β-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress.

Results

We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment.

Conclusions

The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus.

【 授权许可】

   
2013 Zambuzzi-Carvalho et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328184258912.pdf 933KB PDF download
Figure 5. 60KB Image download
Figure 4. 68KB Image download
Figure 3. 58KB Image download
Figure 2. 88KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Pfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007, 20:133-163.
  • [2]Dismukes WE: Antifungal therapy: lessons learned over the past 27 years. Clin Infect Dis 2006, 42:1289-1296.
  • [3]Zhai B, Lin X: Recent progress on antifungal drug development. Curr Pharm Biotechnol 2011, 8:1255-1262.
  • [4]Cos P, Vlietinck AJ, Berghe DV, Maes L: Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept’. J Ethnopharmacol 2006, 3:290-302.
  • [5]Stein AC, Alvarez S, Avancini C, Zacchino S, von Poser G: Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol 2006, 107:95-98.
  • [6]Agüero M, Alvarez S, Luna L, Feresin G, Derita M, Tapia A, Zacchino S: Antifungal activity of Zuccagnia punctata Cav. Evidences for the mechanism of action. Planta Med 2007, 73:1074-1080.
  • [7]Pacciaroni A, Gette M, Derita MA, Ariza Espinar L, Gil RR, Zacchino SA, Silva GL: Antifungal activity of Heterothalamus alienus metabolites. Phytothery Res 2008, 4:524-528.
  • [8]Auricchio MT, Bacchi EM: Eugenia uniflora L. “brazilian cherry” leaves: pharmacobotanical, chemicaland pharmacological properties. Rev Inst Adolfo Lutz 2003, 62:55-61.
  • [9]Schmeda-Hirschmann G, Theoduloz C, Franco L, Ferro E, de Arias AR: Preliminary pharmacological studies on Eugenia uniflora leaves: xanthine oxidase inhibitory activity. J Ethnopharmacol 1987, 2:183-186.
  • [10]Kiss AK, Bazylko A, Filipek A, Granica S, Jaszewska E, Kiarszys U, Kósmider A, Piwowarski J: Oenothein B’s contribution to the anti-inflammatory and antioxidant activity of Epilobium sp. Phytomed 2010, 18:557-560.
  • [11]Brandelli CLC, Giordani RB, De Carli GA, Tasca T: Indigenous traditional medicine: in vitro anti-giardial activity of plants used in the treatment of diarrhea. Parasitol Res 2009, 104:1345-1349.
  • [12]Consolini AE, Baldini OAN, Amat AG: Pharmacological basis for the empirical use of Eugenia uniflora L. (Myrtaceae) as antihypertensive. J Ethnopharmacol 1999, 66:33-39.
  • [13]Coutinho HDM, Costa JGM, Falcão-Silva VS, Siqueira-Júnior JP, Lima EO: Potentiation of antibiotic activity by Eugenia uniflora and Eugenia jambolanum. J Med Food 2010, 4:1024-1026.
  • [14]National Health Surveillance Agency (Anvisa): Brazilian pharmacopeia. Volume 5. 4th edition. Edited by Atheneu. São Paulo, Brazil; 2003.
  • [15]National Health Surveillance Agency (Anvisa): Brazilian resolution, RDC No 267. Brazil: Ministry of Health; 2005.
  • [16]Funatogawa K, Hayashi S, Shimomura H, Yashida T, Hatano T, Ito H, Hirai Y: Antibacterial activity of hydrolyzable tannins derived from medicinal plants against helicobacter pilory. Microbiol Immunol 2004, 48:251-261.
  • [17]Aoki K, Maruta H, Uchiumi F, Hatano T, Yoshida T, Tanuma S: A macrocircular ellagitannin, oenothein B, suppresses mouse mammary tumor gene expression via inhibition of poly (ADP-ribose) glycohydrolase. Biochem Biophys Res 1995, 210:329-337.
  • [18]Lesuisse D, Berjonneau J, Ciot C, Devaux P, Doucet B, Gouvest JF, Khemis B, Lang C, Legrand R, Lowinski M, Maquin P, Parent A, Schoot B, Teutsch G: Determination of oenothein B as active 5-α-redutase-inhibiting principle of the folk medicine epilobium parviflorum. J Nat Prod 1996, 59:490-492.
  • [19]Santos GD, Ferri PH, Santos SC, Bao SN, Soares CMA, Pereira M: Oenothein B inhibits the expression of PbFKS1 transcript and induces morphological changes in Paracoccidioides brasiliensis. Med Mycol 2007, 7:609-618.
  • [20]San-Blas G, Burger E: Experimental medical mycological research in Latin America – a 2000–2009 overview. Ver Iberoam Micol 2011, 1:1-25.
  • [21]Shikanai-Yasuda MA, Queiroz-Telles F, Mendes RP, Colombo AL, Moretti ML: Guidelines in paracoccidioidomycosis. Revista da Sociedade Brasileira de Med Trop 2006, 39:297-310.
  • [22]Travassos LR, Taborda CP: New advances in the development of vaccine against paracoccidioidomycosis. Front Microbiol 2011, 3:1-6.
  • [23]Agarwal AK, Xu T, Jacob MR, Feng Q, Lorenz MC, Walker LA, Clark M: Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. Eukariot Cell 2008, 7:387-400.
  • [24]Zang QY, Mao JH, Liu P, Huang QH, Lu J, Xie YY, Weng L, Zhang Y, Chen Q, Chen SJ, Chen Z: A systems biology understanding of the synergistic effects of arsenic sulfide and imatinib in BCR/ABL-associated leukemia. Proc Natl Acad Sci USA 2009, 106:3378-3383.
  • [25]Xu T, Feng Q, Jacob MR, Avula B, Mask MM, Baerson SR, Tripathi SR, Mohammed R, Hamann MT, Khan IA, Walker LA, Clark AM, Agarwal AK: The marine sponge-derived polyketide endoperoxidase plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis. Antimicrob Agents Chemother 2011, 55:1611-1621.
  • [26]Yan C, Zhang ZX, Xu HH: An SSH library responsive to azadirachtin a constructed in Spodoptera litura Fabricius cell lines. J Biotechnol 2012, 1–2:115120.
  • [27]Pastorian K, Havell L III, Byus CV: Optimization of cDNA representational difference analysis for the identification of differentially expressed mRNAs. Anal Biochem 2000, 283:89-98.
  • [28]Hart TW, Wu X, Tatchell K: Protein phosphatase type 1 regulates ion homeostasis in Saccharomyces cerevisiae. Genet 2002, 160:1423-1437.
  • [29]Tomazett PK, Castro NS, Lenzi HL, Soares CMA, Pereira M: Response of Paracoccidioides brasiliensis Pb01 to stressor agents and cell wall osmoregulators. Fungal Biol 2011, 1:62-69.
  • [30]Roncero C, Durán A: Effect of calcofluor white and congo red on fungal cell wall morphogenesis: In vivo activation of chitin polymerization. J Bacteriol 1985, 163:1180-1185.
  • [31]Wood PJ: Specificty in the interaction of direct dyes with polysaccharides. Carbohydr Res 1980, 81:271-287.
  • [32]Herth W: Calcofluor white and congo red inhibit chitin microfibril assembly of Poteriochromonas: evidence for a gap between polymerization and microfibril formation. J Cell Biol 1980, 87:442-450.
  • [33]Yamaguchi MU, Silva APB, Ueda-Nakamura T, Dias FIlho BP, Silva CC, Nakamura CV: Effects of a thiosemicarbazide camphene derivative on Trichphyton mentagrophytes. Molecules 2009, 17:1796-1807.
  • [34]Kanetsuna F, Carbonell LM, Azuma I, Yamamura Y: Biochemical studies on the thermal dimorphism of Paracoccidioides brasiliensis. J Bacteriol 1972, 110:208-218.
  • [35]Restrepo A: The ecology of Paracoccidioides brasiliensis: a puzzle still unsolved. Sabouraudia 1985, 23:323-334.
  • [36]San-Blas G: Paracoccidioidomycosis and its etiologic agent Paracoccidioides brasiliensis. J Med Vet Mycol 1993, 2:99-113.
  • [37]Carbonell LM, Kanetsuna F, Gil F: Chemical morphology of glucan and chitin in the cell wall of the yeast phase of Paracoccidioides brasiliensis. J Bacteriol 1970, 101:636-642.
  • [38]San-Blas G: The cell wall of fungal human pathogens: it’s possible role in host-parasite relationships. Mycopathol 1982, 79:159-184.
  • [39]Silva SP, Felipe MSS, Pereira M, Azevedo MO, Soares CMA: Phase transition and stage-specific protein synthesis in the dimorphic fungus Paracoccidioides brasiliensis. Exp Mycol 1994, 18:294-299.
  • [40]Brown GD: Dectin-1: a signallinh non-TLR pattern-recognition receptor. Nat Rev Immunol 2006, 1:33-34.
  • [41]Shapiro BM, Stadtman ER: Glutamine synthetase (E. coli). Methods Enzymol 1970, 17A:910-922.
  • [42]Kramer KJ, Koga D: Insect chitin: physical state, synthesis, degradation and metabolic regulation. Insect Biochem 1986, 16:851-877.
  • [43]Chandra H, Basis SF, Gupta M, Banerjee N: Glutamine synthase encoded by glnA-1 is necessary for cell wall resistance and pathogenicity of Mycobacterium bovis. Microbiol 2010, 12:3669-3677.
  • [44]Bailão AM, Schrank A, Borges CL, Dutra V, Molinari-Madlum EEWI, Felipe MSS, Mendes-Giannini MJS, Martins WS, Pereira M, Soares CMA: Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: Representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infec 2006, 8:2686-2697.
  • [45]Kaneko Y, Ohno H, Kohno S, Miyazaki Y: Micafungin alters the expression of genes related to cell wall integrity in Candida albicans biofilms. Jpn J Infect Dis 2010, 63:355-357.
  • [46]Rogg LE, Fortwendel JR, Juvvadi PR, Lilley A, Steinbach WJ: The chitin synthase genes chsA and chsC are not required for cell wall stress response in the human pathogen Aspergillus fumigates. Bioch Bioph Res Comm 2011, 3:549-554.
  • [47]Kurita T, Noda Y, Takagi T, Osumi M, Yoda K: Kre6 protein essential for yeast cell wall β-1,6-glucan synthesis accumulates at sites of polarized. J Biol Chem 2011, 286:7429-7438.
  • [48]Roemer T, Bussey H: Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci USA 1991, 88:11295-11299.
  • [49]Gilbert NM, Donlin MJ, Gerik KJ, Specht CA, Djordjevic JT, Wilson CF, Sorrell C, Lodge JK: KRE genes are required for b-1,6-glucan synthesis, maintenance of capsule architecture and cell wall protein anchoring in Cryptococcus neoformans. Mol Microb 2010, 2:517-534.
  • [50]Dwek RA: Glycobiology: toward understanding the function of sugars. Chem Rev 1996, 2:683-720.
  • [51]Madi A, Free SJ: α-1,6-mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus Neurospora crassa. Eukaryot Cell 2010, 9:1766-1775.
  • [52]Klis FM, Mol P, Hellingwerff K, Brul S: Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 2006, 26:239-256.
  • [53]Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV: Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007, 27:2037-2047.
  • [54]Uccelletti D, Farina F, Rufini S, Magnelli P, Abeijon C, Palleschi1 C: The Kluyveromyces lactis α-1,6-mannosyltransferase KlOch1p is required for cell-wall organization and proper functioning of the secretory pathway. FEMS Yeast Res 2006, 6:449-457.
  • [55]Ueno K, Namiki Y, Mitani H, Yamaguchi M, Chibana H: Differential cell wall remodeling of two chitin synthase deletants Δchs3A and Δchs3B in the pathogenic yeast Candida glabrata. FEMS Yeast Res 2011, 11:398-407.
  • [56]Bowman SM, Free SJ: The structure and synthesis of the fungal cell wall. Bioessays 2006, 28:799-808.
  • [57]Latgé JP: The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 2007, 66:279-290.
  • [58]Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R: Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 1993, 28:963-967.
  • [59]Abe F, Usui K, Hiraki T: Fluconazole modulates membrane rigidity, heterogeneity, and water penetration into the plasma membrane in Saccharomyces cerevisiae. Biochemistry 2009, 48:8494-8504.
  • [60]Martin SW, Konopka JB: Lipid raft polarization contributes to hyphal growth Candida albicans. Eukariot Cell 2004, 3:675-684.
  • [61]Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL: Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukariot Cell 2003, 2:1053-1060.
  • [62]Martel CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AGS, Rolley N, Kelly DE, Kelly SL: Identification and characterization of four azole-resistant erg3 mutants of Candida albicans. Antimicrob Agent Chem 2010, 54:4527-4533.
  • [63]Alcazar-Fuoli LA, Melladoa E, Garcia-Efreona G, Lopez BJL, Grimalt JO, Cuenca-Estrella JM, Rodriguez-Tudela JL: Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids 2008, 73:339-347.
  • [64]Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, Ferrero I, Donnini C: Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Gen 2010, 19:1098-1107.
  • [65]Jeon J, Yang JE, Kim S: Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters. PLOS Comput Biol 2009, 5:1-12.
  • [66]Vermitsky JP, Edlind TD: Azole resistance in Candida glabrata:coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother 2004, 48:3773-3781.
  • [67]Holmes AR, Lin YH, Niimi K, Lamping E, Keniya M, Niimi M, Tanabe K, Monk BC, Cannon RD: ABC transporter Cdr1p contributes more Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 2008, 52:3851-3862.
  • [68]Tanabe K, Lamping E, Adachi K, Takano Y, Kawabata K, Shizuri Y, Niimi M, Uehara Y: Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochem Biophy Res Commun 2007, 364:990-995.
  • [69]Sharma M, Manoharlal R, Shukla S, Puri N, Prasad T, Ambudkar SV, Prasad R: Curcumin modulates efflux mediated by yeast ABC multidrug transporters and is synergistic with antifungals. Antimicrob Agents Chemother 2009, 53:3256-3265.
  • [70]Holmes AR, Keniya MV, Ivnitski-Steele I, Monk BC, Lamping E, Skalar LA, Cannon RD: The monoamine oxidase A inhibitor clogyline is a broad-spectrum inhibitor of fungal ABC and MFS transporte efflux pump activies which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates. Antimicrob Agents Chemother 2012, 3:1508-1515.
  • [71]Bal AM: The echinocandins: three useful choices or three many? J Antimicrob Agents Chemother 2010, 35:13-18.
  • [72]Nakai T, Uno J, Ikeda F, Tawara S, Nishimura K, Miyaji M: In vitro antifungal activity of micafungin (FK463) against dimorphic fungi: comparison of yeast-like and mycelia forms. Antimicrob Agents Chemother 2003, 47:1376-1381.
  • [73]Rodríguez-Brito S, Niño-Vega G, San-Blas G: Caspofungin affects growth of Paracoccidioides brasiliensis in both morphological phases. Antimicrob Agents Chemother 2010, 54:5391-5394.
  • [74]Brummer E, Castãneda E, Restrpo A: Paracoccidioidomycose: an update. Clin Microbiol Rev 1993, 6:89-117.
  • [75]Zambuzzi-Carvalho PF, Cruz AHS, Silva LKS, Goes A, Soares CMA, Pereira M: The malate synthase of Paracoccidioides brasiliensis Pb01 is required in the glyoxylate cycle and in the allantoin degradation pathway. Med Mycol 2009, 31:1-11.
  • [76]Da Silva Neto BR, de Fátima da Silva J, Mendes-Giannini MJ, Lenzi HL, de Almeida Soares CM, Pereira M: The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesin. BMC Microbiol 2009, 9:272. BioMed Central Full Text
  • [77]Pereira M, Song Z, Santos-Silva LK, Richards MH, Nguyen TT, Liu J, de Almeida Soares CM, da Silva Cruz AH, Ganapathy K, Nes WD: Cloning, mechanistic and functional analysis of a fungal sterol C24-methyltransferase implicated in brassicasterol biosynthesis. Biochim Biophys Acta 2010, 1801:1163-1174.
  • [78]Cruz AH, Brock M, Zambuzzi-Carvalho PF, Santos-Silva LK, Troian RF, Góes AM, Soares CM, Pereira M: Phosphorylation is the major mechanism regulating isocitrate lyase activity in Paracoccidioides brasiliensis in yeast cells. FEBS J 2011, 278:2318-2332.
  • [79]Fava-Netto C: Estudos quantitativos sobre a fixação do complemento na Blastomicose Sul-Americana com antígenos polissacarídicos. Arq Cir Clín Exp 1955, 18:197-254.
  • [80]Restrepo A, Jiménez B: Growth of Paracoccidioides brasiliensis yeast phase in a chemically defined culture medium. J Clin Microbiol 1980, 12:279-281.
  • [81]Freshney R: Culture of animal cells. In A manual of basic technique. Edited by Alan R. New York: Liss; 1987:117.
  • [82]Lisitsyn N, Lisitsyn N, Wigler M: Cloning the differences between two complex genomes. Science 1993, 12:946-951.
  • [83]Hubank M, Schatz DG: Identifying difference in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 1994, 25:5640-5648.
  • [84]Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res 1998, 8:175-185.
  • [85]Crossmatch Program Database[http://www.macvector.com/Assembler/trimmingwithcrossmatch.html] webcite
  • [86]Huang X, Madan A: CAP3: a DNA sequence assembly program. Genome Res 1999, 9:868-877.
  • [87]Laboratório de Biologia Molecular/UFG Database[http://www.lbm.icb.ufg.br/joomlaLBM/] webcite
  • [88]GeneBank Database[http://www.ncbi.nlm.nih.gov] webcite
  • [89]Altschul SF, Madden TL, Schäffer AA, Zhang J, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [90]Paracoccidioides Structural Genome Databasehttp://www.broad.mit.edu/annotation/genome/paracoccidioides_brasiliensis/ webcite
  • [91]Blast2GO Program Database[http://www.blast2go.org] webcite
  • [92]Conesa A, Göts S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3676-3686.
  • [93]Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36:3420-35.
  • [94]MIPS Functional Catalog Database[http://mips.helmholtz-muenchen.de/genre/proj/ustilago/listSearch.html?] webcite
  • [95]Bookout L, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF: High-throughput real-time quantitative reverse transcription PCR. In Current protocols in molecular biology. Edited by Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. John Wiley & Sons; 2006:1-28. 15.8. Chapter 15: United 15.8. DOI:?10.1002/0471142727.mb1508s73.
  文献评价指标  
  下载次数:28次 浏览次数:20次