期刊论文详细信息
BMC Genomics
Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection
Laura J Knoll1  Matthew T Aliota2  Kelly J Pittman1 
[1] Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, USA;Current Address: Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
关键词: Immune response;    Metabolism;    Forebrain;    Chronic infection;    Acute infection;    Transcriptome;    RNA-seq;    Toxoplasma;   
Others  :  1139555
DOI  :  10.1186/1471-2164-15-806
 received in 2014-02-04, accepted in 2014-09-17,  发布年份 2014
PDF
【 摘 要 】

Background

The obligate intracellular parasite Toxoplasma gondii establishes a life-long chronic infection within any warm-blooded host. After ingestion of an encysted parasite, T. gondii disseminates throughout the body as a rapidly replicating form during acute infection. Over time and after stimulation of the host immune response, T. gondii differentiates into a slow growing, cyst form that is the hallmark of chronic infection. Global transcriptome analysis of both host and parasite during the establishment of chronic T. gondii infection has not yet been performed. Here, we conducted a dual RNA-seq analysis of T. gondii and its rodent host to better understand host and parasite responses during acute and chronic infection.

Results

We obtained nearly one billion paired-end RNA sequences from the forebrains of uninfected, acutely and chronically infected mice, then aligned them to the genomic reference files of both T. gondii and Mus musculus. Gene ontology (GO) analysis of the 100 most highly expressed T. gondii genes showed less than half were shared between acute and chronic infection. The majority of the highly expressed genes common in both acute and chronic infection were involved in transcription and translation, underscoring that parasites in both stages are actively synthesizing proteins. Similarly, most of the T. gondii genes highly expressed during chronic infection were involved in metabolic processes, again highlighting the activity of the cyst stage at 28 days post-infection. Comparative analyses of host genes using uninfected forebrain revealed over twice as many immune regulatory genes were more abundant during chronic infection compared to acute. This demonstrates the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription.

Conclusions

RNA-seq is a valuable tool to simultaneously analyze host and microbe transcriptomes. Our data shows that T. gondii is metabolically active and synthesizing proteins at 28 days post-infection and that a distinct subset of host genes associated with the immune response are more abundant specifically during chronic infection. These data suggest host and pathogen interplay is still present during chronic infection and provides novel T. gondii targets for future drug and vaccine development.

【 授权许可】

   
2014 Pittman et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150321205236972.pdf 1151KB PDF download
Figure 5. 55KB Image download
Figure 4. 56KB Image download
Figure 3. 88KB Image download
Figure 2. 42KB Image download
Figure 1. 89KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Dubey JP: Advances in the life cycle of Toxoplasma gondii. Int J Parasitol 1998, 28(7):1019-1024.
  • [2]Black MW, Boothroyd JC: Lytic cycle of Toxoplasma gondii. Microbiol Mol Biol Rev 2000, 64(3):607-623.
  • [3]Skariah S, McIntyre MK, Mordue DG: Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol Res 2010, 107(2):253-260.
  • [4]Weiss LM, Kim K: The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci 2000, 5:D391-D405.
  • [5]Robert-Gangneux F, Darde ML: Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 2012, 25(2):264-296.
  • [6]Roizen N, Swisher CN, Stein MA, Hopkins J, Boyer KM, Holfels E, Mets MB, Stein L, Patel D, Meier P, Withers S, Remington J, Mack D, Heydemann PT, Patton D, McLeod R: Neurologic and developmental outcome in treated congenital toxoplasmosis. Pediatrics 1995, 95(1):11-20.
  • [7]McAuley J, Boyer KM, Patel D, Mets M, Swisher C, Roizen N, Wolters C, Stein L, Stein M, Schey W, Remington J, Meier P, Johnson D, Heydemann P, Holfels E, Withers S, Mack D, Brown C, Patton D, McLeod R: Early and longitudinal evaluations of treated infants and children and untreated historical patients with congenital toxoplasmosis: the Chicago Collaborative Treatment Trial. Clin Infect Dis 1994, 18(1):38-72.
  • [8]Montoya JG, Liesenfeld O: Toxoplasmosis. Lancet 2004, 363(9425):1965-1976.
  • [9]Ong EL: Common AIDS-associated opportunistic infections. Clin Med 2008, 8(5):539-543.
  • [10]Luft BJ, Remington JS: Toxoplasmic encephalitis in AIDS. Clin Infect Dis 1992, 15(2):211-222.
  • [11]Feustel SM, Meissner M, Liesenfeld O: Toxoplasma gondii and the blood–brain barrier. Virulence 2012, 3(2):182-192.
  • [12]Buchholz KR, Fritz HM, Chen X, Durbin-Johnson B, Rocke DM, Ferguson DJ, Conrad PA, Boothroyd JC: Identification of tissue cyst wall components by transcriptome analysis of in vivo and in vitro Toxoplasma gondii bradyzoites. Eukaryot Cell 2011, 10(12):1637-1647.
  • [13]Bahl A, Davis PH, Behnke M, Dzierszinski F, Jagalur M, Chen F, Shanmugam D, White MW, Kulp D, Roos DS: A novel multifunctional oligonucleotide microarray for Toxoplasma gondii. BMC Genomics 2010, 11:603. BioMed Central Full Text
  • [14]Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC: Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell 2002, 1(3):329-340.
  • [15]Fritz HM, Buchholz KR, Chen X, Durbin-Johnson B, Rocke DM, Conrad PA, Boothroyd JC: Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One 2012, 7(2):e29998.
  • [16]Skariah S, Mordue DG: Identification of Toxoplasma gondii genes responsive to the host immune response during in vivo infection. PLoS One 2012, 7(10):e46621.
  • [17]Hill RD, Gouffon JS, Saxton AM, Su C: Differential gene expression in mice infected with distinct Toxoplasma strains. Infect Immun 2012, 80(3):968-974.
  • [18]Jia B, Lu H, Liu Q, Yin J, Jiang N, Chen Q: Genome-wide comparative analysis revealed significant transcriptome changes in mice after Toxoplasma gondii infection. Parasit Vectors 2013, 6:161. BioMed Central Full Text
  • [19]McGettigan PA: Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 2013, 17(1):4-11.
  • [20]Hassan MA, Melo MB, Haas B, Jensen KD, Saeij JP: De novo reconstruction of the Toxoplasma gondii transcriptome improves on the current genome annotation and reveals alternatively spliced transcripts and putative long non-coding RNAs. BMC Genomics 2012, 13:696. BioMed Central Full Text
  • [21]Tomita T, Bzik DJ, Ma YF, Fox BA, Markillie LM, Taylor RC, Kim K, Weiss LM: The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathog 2013, 9(12):e1003823.
  • [22]Tanaka S, Nishimura M, Ihara F, Yamagishi J, Suzuki Y, Nishikawa Y: Transcriptome Analysis of Mouse Brain Infected with Toxoplasma gondii. Infect Immun 2013, 81(10):3609-3619.
  • [23]Derouin F, Garin YJ: Toxoplasma gondii: blood and tissue kinetics during acute and chronic infections in mice. Exp Parasitol 1991, 73(4):460-468.
  • [24]Mordue DG, Monroy F, La Regina M, Dinarello CA, Sibley LD: Acute toxoplasmosis leads to lethal overproduction of Th1 cytokines. J Immunol 2001, 167(8):4574-4584.
  • [25]Saeij JP, Boyle JP, Grigg ME, Arrizabalaga G, Boothroyd JC: Bioluminescence imaging of Toxoplasma gondii infection in living mice reveals dramatic differences between strains. Infect Immun 2005, 73(2):695-702.
  • [26]Ferguson DJ, Hutchison WM: An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res 1987, 73(6):483-491.
  • [27]Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, Crisanti A: Temporal and spatial distribution of Toxoplasma gondii differentiation into Bradyzoites and tissue cyst formation in vivo. Infect Immun 2008, 76(8):3491-3501.
  • [28]Cannella D, Brenier Pinchart MP, Braun L, Van Rooyen JM, Bougdour A, Bastien O, Behnke MS, Curt RL, Curt A, Saeij JP, Sibley LD, Pelloux H, Hakimi MA: miR-146a and miR-155 delineate a MicroRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Rep 2014, 6(5):928-937.
  • [29]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36(10):3420-3435.
  • [30]Jung C, Lee CY, Grigg ME: The SRS superfamily of Toxoplasma surface proteins. Int J Parasitol 2004, 34(3):285-296.
  • [31]Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, Yarovinsky F, Herbert DR, Bzik DJ, Denkers EY: Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog 2011, 7(9):e1002236.
  • [32]Reichmann G, Dlugonska H, Fischer HG: Characterization of TgROP9 (p36), a novel rhoptry protein of Toxoplasma gondii tachyzoites identified by T cell clone. Mol Biochem Parasitol 2002, 119(1):43-54.
  • [33]Denton H, Roberts CW, Alexander J, Thong KW, Coombs GH: Enzymes of energy metabolism in the bradyzoites and tachyzoites of Toxoplasma gondii. FEMS Microbiol Lett 1996, 137(1):103-108.
  • [34]Al-Anouti F, Tomavo S, Parmley S, Ananvoranich S: The expression of lactate dehydrogenase is important for the cell cycle of Toxoplasma gondii. J Biol Chem 2004, 279(50):52300-52311.
  • [35]Odberg-Ferragut C, Soete M, Engels A, Samyn B, Loyens A, Van Beeumen J, Camus D, Dubremetz JF: Molecular cloning of the Toxoplasma gondii sag4 gene encoding an 18 kDa bradyzoite specific surface protein. Mol Biochem Parasitol 1996, 82(2):237-244.
  • [36]Lekutis C, Ferguson DJ, Boothroyd JC: Toxoplasma gondii: identification of a developmentally regulated family of genes related to SAG2. Exp Parasitol 2000, 96(2):89-96.
  • [37]Saeij JP, Arrizabalaga G, Boothroyd JC: A cluster of four surface antigen genes specifically expressed in bradyzoites, SAG2CDXY, plays an important role in Toxoplasma gondii persistence. Infect Immun 2008, 76(6):2402-2410.
  • [38]Van TT, Kim SK, Camps M, Boothroyd JC, Knoll LJ: The BSR4 protein is up-regulated in Toxoplasma gondii bradyzoites, however the dominant surface antigen recognised by the P36 monoclonal antibody is SRS9. Int J Parasitol 2007, 37(8–9):877-885.
  • [39]Kim SK, Karasov A, Boothroyd JC: Bradyzoite-specific surface antigen SRS9 plays a role in maintaining Toxoplasma gondii persistence in the brain and in host control of parasite replication in the intestine. Infect Immun 2007, 75(4):1626-1634.
  • [40]Wong WK, Upton A, Thomas MG: Neuropsychiatric symptoms are common in immunocompetent adult patients with Toxoplasma gondii acute lymphadenitis. Scand J Infect Dis 2013, 45(5):357-361.
  • [41]Godwin R: Toxoplasma gondii and elevated suicide risk. Vet Rec 2012, 171(9):225.
  • [42]Fouts AE, Boothroyd JC: Infection with Toxoplasma gondii bradyzoites has a diminished impact on host transcript levels relative to tachyzoite infection. Infect Immun 2007, 75(2):634-642.
  • [43]Kirkman LA, Weiss LM, Kim K: Cyclic nucleotide signaling in Toxoplasma gondii bradyzoite differentiation. Infect Immun 2001, 69(1):148-153.
  • [44]Kurokawa H, Kato K, Iwanaga T, Sugi T, Sudo A, Kobayashi K, Gong H, Takemae H, Recuenco FC, Horimoto T, Akashi H: Identification of Toxoplasma gondii cAMP dependent protein kinase and its role in the tachyzoite growth. PLoS One 2011, 6(7):e22492.
  • [45]Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD: Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010, 465(7296):359-362.
  • [46]Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A: Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci U S A 1993, 90(13):6115-6119.
  • [47]Denkers EY, Gazzinelli RT, Martin D, Sher A: Emergence of NK1.1+ cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med 1993, 178(5):1465-1472.
  • [48]Hunter CA, Subauste CS, Van Cleave VH, Remington JS: Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha. Infect Immun 1994, 62(7):2818-2824.
  • [49]Suzuki Y: Host resistance in the brain against Toxoplasma gondii. J Infect Dis 2002, 185(Suppl 1):S58-S65.
  • [50]O'Brien KB, Schultz-Cherry S, Knoll LJ: Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection. J Virol 2011, 85(17):8680-8688.
  • [51]Hauser WE Jr, Sharma SD, Remington JS: Natural killer cells induced by acute and chronic toxoplasma infection. Cell Immunol 1982, 69(2):330-346.
  • [52]Khan IA, Schwartzman JD, Matsuura T, Kasper LH: A dichotomous role for nitric oxide during acute Toxoplasma gondii infection in mice. Proc Natl Acad Sci U S A 1997, 94(25):13955-13960.
  • [53]Scharton-Kersten TM, Yap G, Magram J, Sher A: Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med 1997, 185(7):1261-1273.
  • [54]Bohne W, Heesemann J, Gross U: Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infect Immun 1994, 62(5):1761-1767.
  • [55]Fox BA, Gigley JP, Bzik DJ: Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. Int J Parasitol 2004, 34(3):323-331.
  • [56]Rozenfeld C, Martinez R, Figueiredo RT, Bozza MT, Lima FR, Pires AL, Silva PM, Bonomo A, Lannes-Vieira J, De Souza W, Moura-Neto V: Soluble factors released by Toxoplasma gondii-infected astrocytes down-modulate nitric oxide production by gamma interferon-activated microglia and prevent neuronal degeneration. Infect Immun 2003, 71(4):2047-2057.
  • [57]Saeij JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC: Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 2007, 445(7125):324-327.
  • [58]Maeda H, Wu J, Okamoto T, Maruo K, Akaike T: Kallikrein-kinin in infection and cancer. Immunopharmacology 1999, 43(2–3):115-128.
  • [59]Zhang X, Scicli GA, Xu X, Nasjletti A, Hintze TH: Role of endothelial kinins in control of coronary nitric oxide production. Hypertension 1997, 30(5):1105-1111.
  • [60]Scarisbrick IA, Blaber SI, Lucchinetti CF, Genain CP, Blaber M, Rodriguez M: Activity of a newly identified serine protease in CNS demyelination. Brain 2002, 125(Pt 6):1283-1296.
  • [61]Scarisbrick IA, Epstein B, Cloud BA, Yoon H, Wu J, Renner DN, Blaber SI, Blaber M, Vandell AG, Bryson AL: Functional role of kallikrein 6 in regulating immune cell survival. PLoS One 2011, 6(3):e18376.
  • [62]Tobin CM, Knoll LJ: A patatin-like protein protects Toxoplasma gondii from degradation in a nitric oxide-dependent manner. Infect Immun 2012, 80(1):55-61.
  • [63]Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001, 29(9):e45.
  • [64]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [65]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11(8):R86. BioMed Central Full Text
  • [66]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol 2010, 19(19):11-21. 19 10
  • [67]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller L, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15(10):1451-1455.
  • [68]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14(4):R36. BioMed Central Full Text
  • [69]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  文献评价指标  
  下载次数:35次 浏览次数:16次