期刊论文详细信息
BMC Neuroscience
Minocycline reduces reactive gliosis in the rat model of hydrocephalus
Zhanxiang Wang3  Feifei Zhang3  Caiquan Huang3  Feng Liu3  Hongwei Zhu3  Shaolin Zhang1  Guowei Tan2  Hao Xu1 
[1]Medical College of Xiamen University, Xiamen, Fujian Province, 361003, China
[2]School of Life Science, Xiamen University, Xiamen, Fujian Province, 361003, China
[3]Department of Neurosurgery, First Affiliate Hospital of Xiamen University, Xiamen, Fujian Province, 361003, China
关键词: Minocycline;    Microgliosis;    Astrocytosis;    Gliosis;    Hydrocephalus;   
Others  :  1140697
DOI  :  10.1186/1471-2202-13-148
 received in 2012-05-29, accepted in 2012-11-23,  发布年份 2012
PDF
【 摘 要 】

Background

Reactive gliosis had been implicated in injury and recovery patterns associated with hydrocephalus. Our aim is to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce reactive gliosis and inhibit the development of hydrocephalus.

Results

The ventricular dilatation were evaluated by MRI at 1-week post drugs treated, while GFAP and Iba-1were detected by RT-PCR, Immunohistochemistry and Western blot. The expression of GFAP and Iba-1 was significantly higher in hydrocephalic group compared with saline control group (p < 0.05). Minocycline treatment of hydrocephalic animals reduced the expression of GFAP and Iba-1 significantly (p < 0.05). Likewise, the severity of ventricular dilatation is lower in minocycline treated hydrocephalic animals compared with the no minocycline group (p < 0.05).

Conclusion

Minocycline treatment is effective in reducing the gliosis and delaying the development of hydrocephalus with prospective to be the auxiliary therapeutic method of hydrocephalus.

【 授权许可】

   
2012 Xu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325090650303.pdf 1336KB PDF download
Figure 5. 74KB Image download
Figure 4. 74KB Image download
Figure 1. 12KB Image download
Figure 2. 29KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 1.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Mangano FT, McAllister JP, Jones HC, Johnson MJ, Kriebel RM: The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res 1998, 20:697-704.
  • [2]Khan OH, Enno TL, Del Bigio MR: Brain damage in neonatal rats following kaolin induction of hydrocephalus. ExpNeurol 2006, 200(2):311-320.
  • [3]Miller JM, Kumar R, McAllister JP, Krause GS: Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res 2006, 1075:36-47.
  • [4]Miller JM, McAllister JP: Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 2007, 4:5. BioMed Central Full Text
  • [5]Slobodian I, Krassioukov-Enns D, Del Bigio MR: Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats. Cerebrospinal Fluid Res 2007, 4:9. BioMed Central Full Text
  • [6]Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, McAllister JP: Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. ExpNeurol 2010, 226:110-119.
  • [7]McAllister JP 2nd, Miller JM: Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus. Cerebrospinal Fluid Res 2010, 27:7.
  • [8]Yoshida Y, Koya G, Tamayama K, Kumanishi T, Abe S: Development of GFAP-positive cells and reactive changes associated with cystic lesions in HTX rat brain. Neurol Med Chir (Tokyo) 1990, 30(7):445-450.
  • [9]Aoyama Y, Kinoshita Y, Yokota A, Hamada T: Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilamentimmunostaining method. J Neurosurg 2006, 104:332-339.
  • [10]Lopes LS, Slobodian I, DelBigio MR: Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. ExpNeurol 2009, 219(1):187-196.
  • [11]Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J: Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001, 21:2580-2588.
  • [12]Tikka TM, Koistinaho JE: Minocycline provides neuroprotection against n-methyl-d-aspartate neurotoxicity by inhibiting microglia. J Immunol 2001, 166:7527-7533.
  • [13]Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, Kaneko Y, Ojika K, Hess DC, Borlongan CV: Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci 2009, 6:126.
  • [14]Garwood CJ, Cooper JD, Hanger DP, Noble W: Anti-inflammatory impact of minocycline in a mouse model of tauopathy. Front Psychiatry 2010, 12:136.
  • [15]Cai ZY, Yan Y, Chen R: Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 2010, 26:28-36.
  • [16]Klein NC, Cunha BA: Tetracyclines. Med Clin N Am 1995, 79:789-801.
  • [17]Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J: Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 2003, 53:731-742.
  • [18]Nagra G, Li J, McAllister JP 2nd, Miller J: Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J PhysiolRegulIntegr Comp Physiol 2008, 294(5):R1752-R1759.
  • [19]Wu J, Yang S, Xi G, Fu G, Keep RF, Hua Y: Minocycline reduces intracerebral hemorrhage-induced brain injury. Neurol Res 2009, 31(2):183-188.
  • [20]Fagan SC, Edwards DJ, Borlongan CV, Xu L, Arora A, Feuerstein G, Hess DC: Optimal delivery of minocycline to the brain: implication for human studies of acute neuroprotection. ExpNeurol 2004, 186:248-251.
  • [21]Evans WA: An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 1942, 47:931-937.
  • [22]Liao CW, Fan CK, Kao TC, Ji DD, Su KE, Lin YH, Cho WL: Brain injury-associated biomarkers of TGF-beta1, S100B, GFAP, NF-L, tTG, AbetaPP, and tau were concomitantly enhanced and the UPS was impaired during acute brain injury caused by Toxocaracanis in mice. BMC Infect Dis 2008, 8:84. BioMed Central Full Text
  • [23]Xu H, Zhang SL, Tan GW, Zhu HW, Huang CQ, Zhang FF, Wang ZX: Reactive GliosisandNeuroinflammation in Rats with Communicating Hydrocephalus. Neuroscience 2012, 218:317-325.
  • [24]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin-Phenol reagents. J BiolChem 1951, 193(1):265-275.
  • [25]Li J, McAllister JP 2nd, Shen Y, Wagshul ME, Miller JM, Egnor MR, Johnston MG, Haacke EM, Walker ML: Communicating hydrocephalus in adult rats with obstruction of the basal cisterns or the cortical subarachnoid space. ExpNeurol 2008, 211(2):351-361.
  • [26]Rekate HL: A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs NervSyst 2011, 27(10):1535-1541.
  • [27]Sofroniew MV: Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009, 32:638-647.
  • [28]Del Bigio MR, da Silva MC, Drake JM, Tuor UI: Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J NeurolSci 1994, 21:299-305.
  • [29]Albrechtsen M, Sorensen PS, Gjerris F, Bock E: High cerebrospinal fluid concentration of glial fibrillary acidic protein (GFAP) in patients with normal pressure hydrocephalus. J Neurol Sci 1985, 70:269-274.
  • [30]Tullberg M, Blennow K, Mansson JE, Fredman P, Tisell M, Wikkelso C: Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in normal pressure hydrocephalus. Eur J Neurol 2007, 14:248-254.
  • [31]Petzold A, Keir G, Kerr M, Kay A, Kitchen N, Smith M, Thompson EJ: Early identification of secondary brain damage in subarachnoid hemorrhage: a role for glial fibrillary acidic protein. J Neurotrauma 2006, 23:1179-1184.
  • [32]Beems T, Simons KS, Van Geel WJ, De Reus HP, Vos PE, Verbeek MM: Serum- and CSF-concentrations of brain specific proteins in hydrocephalus. ActaNeurochir 2003, 145:37-43.
  • [33]Petzold A, Keir G, Green AJE, Giovannoni G, Thompson EJ: An ELISA for glial fibrillary acidic protein. J Immunol Meth 2004, 287:169-177.
  • [34]Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H: Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 2002, 16(2):255-257.
  • [35]Ciccarelli R, Di Iorio P, D’Alimonte I, Giuliani P, Florio T, Caciagli F, Middlemiss PJ, Rathbone MP: Cultured astrocyte proliferation induced by extracellular guanosine involves endogenous adenosine and is raised by theco-presence of microglia. Glia 2000, 29:202-211.
  • [36]John GR, Lee SC, Brosnan CF: Cytokines: Powerful regulators of glial cell activation. Neuroscientist 2003, 9:10-22.
  • [37]Verderio C, Matteoli M: ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-γ. J Immunol 2001, 166:6383-6391.
  • [38]Heales SJ, Lam AA, Duncan AJ, Land JM: Neurodegeneration or neuroprotection:the pivotal role of astrocytes. Neurochem Res 2004, 29:513-519.
  • [39]Liu B, Hong JS: Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J PharmacolExpTher 2003, 304:1-7.
  • [40]Bruce-Keller AJ: Microglial–neuronal interactions in synaptic damage and recovery. J Neurosci Res 1999, 58:191-201.
  • [41]Rennaker RL, Miller J, Tang H, Wilson DA: Minocycline increases quality and longevity of chronic neural recordings. J Neural Eng 2007, 4(2):L1-L5.
  • [42]Ryu JK, Franciosi S, Sattayaprasert P, Kim SU, McLarnon JG: Minocycline inhibits neuronal death and glial activation induced by beta-amyloid peptide in rat hippocampus. Glia 2004, 48(1):85-90.
  • [43]Filipovic R, Zecevic N: Neuroprotective role of minocycline in co-cultures of human fetal neurons and microglia. ExpNeurol 2008, 211:41-51.
  • [44]Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG: Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 2006, 37(4):1087-1093.
  • [45]Padi SS, Kulkarni SK: Minocycline prevents the development of neuropathic pain, but not acute pain: possible anti-inflammatory and antioxidant mechanisms. Eur J Pharmacol 2008, 601(1–3):79-87.
  • [46]Wasserman JK, Schlichter LC: Neuron death and inflammation in a rat model of intracerebral hemorrhage: Effects of delayed minocycline treatment. Brain Res 2007, 1136:208-218.
  • [47]Siopi E, Cho AH, Homsi S, Croci N, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M: Minocycline restores sAPPα levels and reduces the late histopathological consequences of traumatic brain injury in mice. J Neurotrauma 2011, 28(10):2135-2143.
  文献评价指标  
  下载次数:26次 浏览次数:20次