期刊论文详细信息
BMC Research Notes
Evolutionary constraints and expression analysis of gene duplications in Rhodobacter sphaeroides 2.4.1
Madhusudan Choudhary1  Hyuk Cho2  Anish Bavishi1  Anne E Peters1 
[1] Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA;Department of Computer Science, Sam Houston State University, Huntsville, TX 77341, USA
关键词: Rhodobacter sphaeroides;    Gene expression;    Microarray;    Out-paralog, Evolutionary constraint;    In-paralog;    Gene duplication;   
Others  :  1166494
DOI  :  10.1186/1756-0500-5-192
 received in 2011-10-29, accepted in 2012-04-05,  发布年份 2012
PDF
【 摘 要 】

Background

Gene duplication is a major force that contributes to the evolution of new metabolic functions in all organisms. Rhodobacter sphaeroides 2.4.1 is a bacterium that displays a wide degree of metabolic versatility and genome complexity and therefore is a fitting model for the study of gene duplications in bacteria. A comprehensive analysis of 234 duplicate gene-pairs in R. sphaeroides was performed using structural constraint and expression analysis.

Results

The results revealed that most gene-pairs in in-paralogs are maintained under negative selection (ω ≤ 0.3), but the strength of selection differed among in-paralog gene-pairs. Although in-paralogs located on different replicons are maintained under purifying selection, the duplicated genes distributed between the primary chromosome (CI) and the second chromosome (CII) are relatively less selectively constrained than the gene-pairs located within each chromosome. The mRNA expression patterns of duplicate gene-pairs were examined through microarray analysis of this organism grown under seven different growth conditions. Results revealed that ~62% of paralogs have similar expression patterns (cosine ≥ 0.90) over all of these growth conditions, while only ~7% of paralogs are very different in their expression patterns (cosine < 0.50).

Conclusions

The overall findings of the study suggest that only a small proportion of paralogs contribute to the metabolic diversity and the evolution of novel metabolic functions in R. sphaeroides. In addition, the lack of relationships between structural constraints and gene-pair expression suggests that patterns of gene-pair expression are likely associated with conservation or divergence of gene-pair promoter regions and other coregulation mechanisms.

【 授权许可】

   
2012 Peters et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150416045520264.pdf 1946KB PDF download
Figure 1. 123KB Image download
Figure 8. 74KB Image download
Figure 7. 51KB Image download
Figure 6. 37KB Image download
Figure 5. 49KB Image download
Figure 4. 21KB Image download
Figure 3. 34KB Image download
Figure 2. 62KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 1.

【 参考文献 】
  • [1]Woese CR: Bacterial evolution. Microbiol Rev 1987, 51(2):221-271.
  • [2]Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, et al.: The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 1984, 5:315-326.
  • [3]Mackenzie C, Choudhary M, Larimer FW, Predki PF, Stilwagen S, Armitage JP, Barber RD, Donohue TJ, Hosler JP, Newman JE, et al.: The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth Res 2001, 70(1):19-41.
  • [4]Suwanto A, Kaplan S: Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: genome size, fragment identification, and gene localization. J Bacteriol 1989, 171(11):5840-5849.
  • [5]Suwanto A, Kaplan S: Physical and genetic mapping of the Rhodobacter sphaeroides 2.4.1 genome: presence of two unique circular chromosomes. J Bacteriol 1989, 171(11):5850-5859.
  • [6]Suwanto A, Kaplan S: Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes. J Bacteriol 1992, 174(4):1135-1145.
  • [7]Zeilstra-Ryalls J, Gomelsky M, Eraso JM, Yeliseev A, O'Gara J, Kaplan S: Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 1998, 180(11):2801-2809.
  • [8]Jenney FE Jr, Daldal F: A novel membrane-associated c-type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 1993, 12(4):1283-1292.
  • [9]Grishanin RN, Gauden DE, Armitage JP: Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J Bacteriol 1997, 179(1):24-30.
  • [10]Brandner JP, McEwan AG, Kaplan S, Donohue TJ: Expression of the Rhodobacter sphaeroides cytochrome c2 structural gene. J Bacteriol 1989, 171(1):360-368.
  • [11]Moore MD, Kaplan S: Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 1992, 174(5):1505-1514.
  • [12]Neidle EL, Kaplan S: Expression of the Rhodobacter sphaeroides hemA and hemT genes, encoding two 5-aminolevulinic acid synthase isozymes. J Bacteriol 1993, 175(8):2292-2303.
  • [13]Zeilstra-Ryalls JH, Kaplan S: Control of hemA expression in Rhodobacter sphaeroides 2.4.1: regulation through alterations in the cellular redox state. J Bacteriol 1996, 178(4):985-993.
  • [14]Barber RD, Donohue TJ: Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 1998, 37(2):530-537.
  • [15]Mouncey N, Choudhary M, Kaplan S: Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2. 4. 1: an essential metabolic gene function encoded on chromosome II. J Bacteriol 1997, 179(24):7617-7624.
  • [16]Kiley PJ, Kaplan S: Molecular Genetics of Photosynthetic Membrane Biosynthesis in Rhodobacter sphaeroides. MIicrobiol Rev 1988, 52(1):50-69.
  • [17]Fitch W: Distinguishing homologous from analogous proteins. Systematic Biol 1970, 19(2):99-113.
  • [18]Koonin E: Orthologs, paralogs and evolutionary genomics. Annu Rev Genet 2005, 39:309-338.
  • [19]Roth C, Rastogi S, Arvestad L, Dittmar K, Light S, Ekman D, Liberles DA: Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zoolog B Mol Dev Evol 2007, 308:58-73.
  • [20]Bavishi A, Lin L, Schroeder K, Peters A, Cho H, Choudhary M: The prevalence of gene duplications and their ancient origin in Rhodobacter sphaeroides 2.4.1. BMC Microbiol 2010, 10(1):331. BioMed Central Full Text
  • [21]Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290:1151-1155.
  • [22]Lynch M, Force AG: Gene duplication and the origin of interspecific genomic incompatibility. Am Nat 2000, 156:590-605.
  • [23]Innan H, Kondrashov F: The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 2010, 11(2):97-108.
  • [24]Pappas CT, Sram J, Moskvin OV, Ivanov PS, Mackenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S, Gomelsky M: Construction and validation of the Rhodobacter sphaeroides 2.4. 1 DNA microarray: transcriptome flexibility at diverse growth modes. J Bacteriol 2004, 186(14):4748-4758.
  • [25]Choudhary M, Zanhua X, Fu YX, Kaplan S: Genome analyses of three strains of Rhodobacter sphaeroides: evidence of rapid evolution of chromosome II. J Bacteriol 2007, 189(5):1914-1921.
  • [26]Bavishi A, Abhishek A, Lin L, Choudhary M: Complex prokaryotic genome structure: rapid evolution of chromosome II. Genome 2010, 53(9):675-687.
  • [27]He X, Zhang J: Gene complexity and gene duplicability. Curr Biol 2005, 15(11):1016-1021.
  • [28]Wang DP, Wan HL, Zhang S, Yu J: γ-MYN: a new algorithm for estimating Ka and Ks with consideration of variable substitution rates. Biol Direct 2009, 4(1):20. BioMed Central Full Text
  • [29]Novichkov PS, Wolf YI, Dubchak I, Koonin EV: Trends in prokaryotic evolution revealed by comparison of closely related bacterial and archaeal genomes. J Bacteriol 2009, 191(1):65-73.
  • [30]Ho SYW, Shapiro B, Phillips MJ, Cooper A, Drummond AJ: Evidence for time dependency of molecular rate estimates. Systematic Biol 2007, 56(3):515-522.
  • [31]Rocha EPC, Smith JM, Hurst LD, Holden MTG, Cooper JE, Smith NH, Feil EJ: Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 2006, 239(2):226-235.
  • [32]Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV: Selection in the evolution of gene duplications. Genome Biol 2002, 3(2):research0008.1-research0008.9. BioMed Central Full Text
  • [33]Hughes AL: The evolution of functionally novel proteins after gene duplication. Proceedings: Biological Sciences 1994, 256(1346):119-124.
  • [34]Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci USA 1998, 95:3708-3713.
  • [35]Conery JS, Lynch M: Nucleotide substitutions and the evolution of duplicate genes. Pacific Symposium on Biocomputing 2001, 6:167-178.
  • [36]Liberles DA: Evaluation of methods for determination of a reconstructed history of gene sequence evolution. Mol Biol Evol 2001, 18(11):2040-2047.
  • [37]Jordan IK, Rogozin IB, Wolf YI, Koonin EV: Microevolutionary genomics of bacteria. Theor Popul Biol 2002, 61(4):435-447.
  • [38]Fay JC, Wu C: Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genom Hum G 2003, 4:213-235.
  • [39]Lynch M: Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 2006, 60:327-349.
  • [40]Shakhnovich BE, Koonin EV: Origins and impact of constraints in evolution of gene families. Genome Res 2006, 16:1529-1536.
  • [41]Jordan IK, Rogozin IB, Wolf YI, Koonin EV: Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 2002, 12(6):962-968.
  • [42]Egan ES, Fogel MA, Waldor MK: Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 2005, 56(5):1129-1138.
  • [43]Zhang J: Protein-length distributions for the three domains of life. Trends Genet 2000, 16(3):107-109.
  • [44]Rubin G, Yandell M, Wortman J, Gabor Miklos G, Nelson C, Hariharan I, Fortini M, Li P, Apweiler R, Fleischmann W: Comparative genomics of the eukaryotes. Science 2000, 287(5461):2204-2215.
  • [45]Kondrashov FA, Koonin EV: A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. Trends Genet 2004, 20(7):287-290.
  • [46]Treangen TJ, Rocha EP: Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 2011, 7(1):e1001284.
  • [47]Gu Z, Nicolae D, Lu HH, Li WH: Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 2002, 18(12):609-613.
  • [48]Castillo-Davis CI, Hartl DL, Achaz G: Cis-regulatory and protein evolution in orthologous and duplicate genes. Genome Res 2004, 14(8):1530-1536.
  • [49]Makova KD, Li WH: Divergence in the spatial pattern of gene expression between human duplicate genes. Genome Res 2003, 13(7):1638-1645.
  • [50]Li W, Yang J, Gu X: Expression divergence between duplicate genes. Trends Genet 2005, 21(11):602-607.
  • [51]Bratlie MS, Johansen J, Sherman BT, Huang DW, Lempicki RA, Drablos F: Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics 2010, 11(1):588. BioMed Central Full Text
  • [52]Sanchez-Perez G, Mira A, Nyiro G, Pasic L, Rodriguez-Valera F: Adapting to environmental changes using specialized paralogs. Trends Genet 2008, 24(4):154-158.
  • [53]Wapinski I, Pfeffer A, Friedman N, Regev A: Natural history and evolutionary principles of gene duplication in fungi. Nature 2007, 449:54-61.
  • [54]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [55]Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34:609-612.
  • [56]Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J: KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Geno Prot Bioinfo 2006, 4(4):259-263.
  • [57]Suyama M, Harrington E, Bork P, Torrents D: Identification and analysis of genes and pseudogenes within duplicated regions in the human and mouse genomes. PLoS Comput Biol 2006, 2(6):0627-0636.
  • [58]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17(1):32-43.
  • [59]Zhang Z, Li J, Yu J: Computing Ka and Ks with a consideration of unequal transitional substitutions. BMC Evol Biol 2006, 6:44. BioMed Central Full Text
  • [60]Zhang Z, Yu J: Evaluation of six methods for estimating synonymous and nonsynonymous substitution rates. Geno Prot Bioinfo 2006, 4:173-181.
  • [61]Wang D, Zhang S, He F, Zhu J, Hu S, Yu J: How Do Variable Substitution Rates Influence Ka and Ks Calculations? Geno Prot Bioinfo 2009, 7(3):116-127.
  • [62]Yampolsky L, Bouzinier M: Evolutionary patterns of amino acid substitutions in 12 Drosophila genomes. BMC Genomics 2010, 11(Suppl 4):S10. BioMed Central Full Text
  • [63]Lilliefors HW: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc 1967, 62(318):399-402.
  • [64]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10:512-526.
  • [65]Cheadle C, Vawter MP, Freed WJ, Becker KG: Analysis of microarray data using Z score transformation. J Mol Diagn 2003, 5(2):73-81.
  • [66]Cho H, Dhillon IS: Co-clustering of human cancer microarrays using Minimum Sum-Squared Residue coclustering. IEEE/ACM Trans Compt Biol and Bioinform 2008, 5(3):385-400.
  • [67]McGill MJ, Salton G: Introduction to Modern Information Retrieval. McGraw-Hill, New York, NY; 1987.
  • [68]Costa IG, Carvalho FdATd, Souto MCPd: Comparative analysis of clustering methods for gene expression time course data. Genet and Mol Biol 2004, 27(4):623-631.
  • [69]Chen J, He X, Li L: Identifying the Patterns of Hematopoietic Stem Cells Gene Expressions Using Clustering Methods: Comparison and Summary. J Data Science 2004, 2:297-379.
  • [70]Yeung KY, Haynor DR, Ruzzo WL: Validating clustering for gene expression data. Bioinformatics 2001, 17(4):309-318.
  文献评价指标  
  下载次数:1次 浏览次数:5次