期刊论文详细信息
BMC Medical Genomics
Microarray characterization of gene expression changes in blood during acute ethanol exposure
Dennis Burian1  Dennis J Crouch3  David L Strayer2  Vicky L White1  Doris M Kupfer1 
[1]Civil Aerospace Medical Institute, AAM 610, Federal Aviation Administration, Bioaeronautical Sciences Research Laboratory, Oklahoma City, OK 73169, USA
[2]Department of Psychology 380 S. 1530 E. BEHS 502, Salt Lake City, UT 84112, USA
[3]Utah Toxicology-Expert Services, Sandy, UT 84092, USA
关键词: Microarray;    Biomarkers;    Gene expression;    Blood;    Ethanol;   
Others  :  1092291
DOI  :  10.1186/1755-8794-6-26
 received in 2013-01-09, accepted in 2013-07-17,  发布年份 2013
PDF
【 摘 要 】

Background

As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure.

Methods

Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays.

Results

Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR.

The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway.

Conclusions

The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance.

【 授权许可】

   
2013 Kupfer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128182150932.pdf 1465KB PDF download
Figure 4. 132KB Image download
Figure 3. 155KB Image download
Figure 2. 126KB Image download
Figure 1. 72KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Li G, Baker SP, Qiang Y, Robok GW, McCarthy ML: Alcohol violations and aviation accidents: findings from the U. S. mandatory alcohol testing program. Aviation Space Environ Med 2007, 78(5):510-513.
  • [2]Satter RG New York: Associated Press; 2009.
  • [3]Pow H: The Daily Mail. London: Daily Mail and General Trust; 2013.
  • [4]Morrow D, Yesavage J, Leirer V, Dolhert N, Taylor J, Tinklenberg J: The time-course of alcohol impairment of general aviation pilot performance in a Frasca 141 simulator. Aviat Space Environ Med 1993, 64(8):697-705.
  • [5]Newman DG: Alcohol and human performance from an aviation perspective: a review. Canberra: Australian Transport Safety Bureau; 2004.
  • [6]Taylor JL, Dolhert N, Morrow D, Friedman L, Yesavage JA: Acute and 8-hour effects of alcohol (0.08% BAC) on younger and older pilots’ simulator performance. Aviat Space Environ Med 1994, 65:718-725.
  • [7]NTSB (Ed): Review of U.S. Civil Aviation Accidents 2007–2009. Washington, D.C: National Transportation and Safety Board; 2011.
  • [8]McFadden KL: DWI convictions linked to a higher risk of alcohol-related aircraft accidents. Hum Factors 2002, 44(4):522-529.
  • [9]Canfield DV, Hordinsky J, Millett DP, Endecott B, Smith D: Prevalence of drugs and alcohol in fatal civil aviation accidents between, between 1994 and 1998. Aviat Space Environ Med 2001, 72(2):120-124.
  • [10]Li G, Baker SP, Lamb MW, Qiang Y, McCarthy ML: Characteristics of alcohol-related fatal general aviation crashes. Acc Anal Prev 2005, 37:143-148.
  • [11]Botch SR, Johnson RD: Alcohol-related aviation accidents involving pilots with previous alcohol offenses. Off Aerospace Med Rep 2008, 08(22):1-8.
  • [12]Helander A, Beck O, Jones AW: Urinary 5HTOL/5HIAA as biochemical marker of postmortem ethanol synthesis. Lancet 1992, 340:1159.
  • [13]Johnson RD, Lewis RJ, Canfield DV, Blank CL: Accurate assignment of ethanol origin in postmortem urine: liquid chromatographic-mas spectrometric determination of serotonin metabolites. J Chromatography B Analyt Technol Biomed Life Sci 2004, 805:223-224.
  • [14]McMonagle J, Felig P: Effects of ethanol ingestion on glucose tolerance. Metab Clin Experimen 1975, 24(5):625-632.
  • [15]Badawy AA-B: A review of the effects of alcohol on carbohydrate metabolism. Brit J Alcohol Alcoholism 1977, 12(3):120-136.
  • [16]Wu D, Cederbaum AJ: Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 2003, 27(4):277-284.
  • [17]Arbabi S, Garcia I, Bauer GJ, Maier RV: Alcohol (Ethanol) inhibits IL-8 and TNF: Role of the p38 pathway. J Immunol 1999, 162:7441-7445.
  • [18]Xiao C, Ghosh S: NF-kB as evolutionarily conserved mediator of immune and inflammatory responses. Advan Exp Med Biol 2005, 560:41-45.
  • [19]Mandrekar P, Catalano D, White B, Szabo G: Moderate alcohol intake in humans attenuates monocyte inflammatory responses: inhibition of nuclear regulatory factor Kappa B and induction of interleukin 10. Alcohol Clin Exp Res 2006, 30(1):135-139.
  • [20]Szabo G, Mandrekar P, Oak S, Mayerle J: Effect of ethanol on inflammatory responses. Pacreatology 2007, 7:115-123.
  • [21]Brancho D, Tanaka N, Jaeschke A, Ventura J-J, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ: Mechanism of p38 MAP kinase activation in vivo. Genes Dev 2003, 17:1969-1978.
  • [22]Mandrekar P, Bala S, Catalano D, Kodys K, Szabo G: The opposite effects of acute and chronic alcohol on lipopolysaccharide-induced inflammation are linked to IRAK-M in human monocytes. J Immunol 2009, 183:1320-1327.
  • [23]Saha RN, Jana M, Pahan K: MAPK p38 regulates transcriptional activity of NF-κB in primary human astrocytes via acetylation of p65. J Immunol 2007, 179:7101-7109.
  • [24]Mattson MP, Chan SL: Calcium orchestrates apoptosis. Nature Cell Biol 2003, 5(12):1041-1043.
  • [25]Pastorino JG, Shulga N, Hoek JB: TNF-alpha-induced cell death in ethanol-exposed cells depends on p38 MAPK signaling but is independent of Bid and caspase-8. Am J Physiol Gastrointest Liver Physiol 2003, 285:G503-G516.
  • [26]Norkina O, Dolganiuc A, Shapiro T, Kodys K, Mandraker P, Szabo G: Acute alcohol activates STAT3, AP-1, and Sp-1 transcription factors via the family of Src kinases to promote IL-10 production in human monocytes. J Leukocyte Biol 2007, 82(3):752-762.
  • [27]Norkina O, Dolganiuc A, Catalano D, Kodys K, Mandraker P, Syed A, Efros M, Szabo G: Acute alcohol intake induces SOCS1 and SOCS3 and inhibits cytokine-induced STAT1 and STAT3 signaling in human monocytes. Alcohol Clin Exp Res 2008, 32(9):1565-1573.
  • [28]Szabo G, Catalano D, White B, Mandrekar P: Acute alcohol consumption inhibits accessory cell function of monocytes and dendritic cells. Alcohol Clin Exp Res 2004, 28(5):824-828.
  • [29]Jones AW, Pounder DJ: Update on clinical and forensic analysis of alcohol. In Drug abuse handbook. 2nd edition. Edited by Karch SB. Boca Raton: CRC Press; 2007:333-376.
  • [30]Strayer DL, Drews FA, Crouch DJ: A comparison of the cell phone driver and the drunk driver. Hum Factors 2006, 48(2):381-391.
  • [31]Vu NT, Zhu H, OE D, Huggins ME, White VL, Chaturvedi AK, Canfield DV, Whinnery JE: Isolation of RNA from peripheral blood cells: a validation study for molecular diagnostics by microarray and kinetic RT-PCR assays-Application in aerospace medicine. Office Aerospace Medi Rep 2004, 04(01):1-12.
  • [32]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  • [33]Wu Z, Irizarry R, Gentleman R, Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004, 99:909-917.
  • [34]Jain N, Thatte J, Braciale T, Ley K, O’Connell M, Lee JK: Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays. Bioinformatics 2003, 19(15):1945-1951.
  • [35]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Series B (Methodological) 1995, 57(1):289-300.
  • [36]Leek JT, Monsen E, Dabney AR, Storey JD: EDGE: extraction and analysis of differential gene expression. Bioinformatics 2006, 22(4):507-508.
  • [37]Tai YC, Speed TP: A multivariate empirical Bayes statistic for replicated microarray time course data. Ann Stat 2006, 34(5):2387-2412.
  • [38]Bioconductor. http://www.bioconductor.org/ webcite. Accessed July 20, 2013
  • [39]Futschik ME, Carlisle B: Noise-robust soft vlustering of gene expression time-course data. J Bioinform Comput Bioil 2005, 3(4):965-988.
  • [40]Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003., 4epub
  • [41]Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW III, et al.: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009, 10(10):R130.
  • [42]BioGPS. http://biogps.org/#goto=welcome webcite. Accessed 07.18.13
  • [43]BIOBASE. http://www.biobase-international.com webcite. Accessed 07.18.13
  • [44]Kel A, Voss N, Valeev T, Stegmaier P, Kel-Margoulis O, Wingerder E: ExPlain: finding upstream drug targets in disease gene regulatory networks. SAR QSAR Environ Res 2008, 19(5–6):481-494.
  • [45]Edgar R, Domrachev M, Lash AE: Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210.
  • [46]Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normallization, applied to bladder and colon cancer data sets. Cancer Res 2004, 64:5245-5250.
  • [47]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):1-12. epub
  • [48]Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (RESTc) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30(9):e36.
  • [49]Fenner BJ, Scannell M, Prehn JH: Identification of polyubiquitin binding proteins involved in NF_kappaB signaling using protein arrays. Biochim Biophys Acta 2009, 1794(7):1010-1016.
  • [50]Parikh N, Sade H, Kurian L, Sarin A: The Bax N terminus is required for negative regulation by the mitogen-activated protein kinase kinase and Akt signaling pathways in T cells. J Immunol 2004, 173:6220-6227.
  • [51]Cojocaru M, Bouchard A, Cloutier P, Cooper JJ, Varzavand K, Price DH, Coulombe B: Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B. J Biol Chem 2011, 286(7):5012-5022.
  • [52]Turner J, Crossley M: Basic Kruppel-like factor functions within a network of interacting haematopoietic transcription factors. Int J Biochem Cell Biol 1999, 31(10):1169-1174.
  • [53]Saville MK, Sparks A, Xirodimas DP, Julie W, Stevenson LF, Jean-Christophe B, Woods YL, Lane DP: Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 2004, 279(40):42169-42181.
  • [54]Nathan C, Ding A: Nonresolving inflammation. Cell 2010, 140(6):871-882.
  • [55]Arruda LB, Sim D, Chikhlilkar PR, Maciel M, Akasaki K, August T, Marques ET: Dendritic cell-lysosomal-associated membrane protein (LAMP) and LAMP-1-HIV-1 Gag chimeras have distinct cellular trafficking pathways and prime T and B cell responses to a diverse repertoire of epitopes. J Immunol 2006, 177:2265-2275.
  • [56]Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ: The human Arp2/3 complex is composed of evolutionarily conserved subunits and is locallized to cellular regions of dynamic actin filament assembly. J Cell Biol 1997, 138(2):375-384.
  • [57]Akashi-Takamura S, Miyake K: TLR accessory molecules. Curr Opin Immunol 2008, 20(4):420-425.
  • [58]von Hundelshausen P, Petersen F, Brandt E: Platelet-derived chemokines in vascular biology. J Thrombosis Haemostasis 2007, 97(5):704-713.
  • [59]Kokura K, Sun L, Bedford MT, Fang J: Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. Eur Mole Biol Org J 2010, 29(21):3673-3687.
  • [60]Wontakal SN, Guo X, Smith C, MacCarthy T, Bresnick EH, Bergman A, Snyder MP, Weissman SM, Zheng D, Skoultchi AI: A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation. Proc Nat Acad Sci 2012, 109(10):3832-3837.
  • [61]Yordy JS, Muise-Helmericks RC: Signal transduction and the Ets family of transcription factors. Oncogene 2000, 19:6503-6513.
  • [62]Piccinini M, Mostert M, Alberto G, Ramondetti C, Novi RF, Dalmasso P, Rinaudo MT: Down-regulation of pyruvate dehydrogenase phosphatase in obese subjects is a defect that signals insulin resistance. Obesity Res 2005, 13(4):678-686.
  • [63]Ikonomov OC, Sbrissa D, Mlak K, Shisheva A: Requirement for PIKfyve enzymatic activity in acute and long-term insulin cellular effects. Endocrinology 2002, 143(12):4742-4754.
  • [64]Park I-K, Morrison SJ, Clarke MF: Bmi1, stem cells, and senescence regulation. J Clin Invest 2004, 113(2):175-179.
  • [65]Ame JC, Spenlehauer C, de Murica G: The PARP superfamily. Bioessays 2004, 26(8):882-893.
  • [66]Damcott CM, Hoppman N, Ott SH, Reinhart LJ, Wang J, Pollin TI, O’Connell JR, Mitchell BD, Shuldiner AR: Polymorphisms in both promoters of hepatocyte nuclear factor 4-A are associated with type 2 diabetes in the Amish. Diabetes 2004, 53:3337.
  • [67]Richards MW, O’Regan L, Mas-Droux C, Blot JM, Cheung J, Hoelder S, Fry AM, Bayliss R: An autoinhibotory tyrosine motif in the cell-cycle-regulated Nek7 kinase is relesed through binding of Nek9. Mol Cell 2009, 36(4):560-570.
  • [68]Yellaturu CR, Deng X, Cagen LM, Wilcox HG, Mansbach CM II, Siddiqui SA, Park EA, Raghow R, Elam MB: Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COP11 vesicles. J Biol Chem 2009, 284(12):7518-7532.
  • [69]Takatsu H, Baba K, Shima T, Hiroyuki U, Kato U, Umeda M, Nakayama K, Shimn H-W: ATP9B, a P4-ATPase (a putative aminophospholipid translocase), localizes to the trans-Golgi network in a CDC50 protein-independent manner. J Biol Chem 2011, 286(44):38159-38167.
  • [70]Ouwens DM, de Ruiter ND, van der Zon GCM, Carter AP, Schouten J, van der Burgt C, Kooistra K, Bos JL, Maassen JA, van Dam H: Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. Eur Mole Biol Org J 2002, 21(14):3782-3793.
  • [71]Gee K, Angel JB, Mishra S, Blahoianu MA, Kumar A: IL-10 regulation by HIV-Tat in primary human monocytic cells: involvement of calmodulin/calmodulin-dependent protein kinase-activated p38 MAPK and sp-1 and CREB-1 transcription factors. J Immunol 2007, 178:798-807.
  • [72]Tomar A, Lim S-T, Lim Y, Schlaepfer DD: A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci 2009, 122(11):1852-1862.
  • [73]Zhu Y, McAvoy S, Kuhn R, Smith DI: RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 2006, 25:2901-2908.
  • [74]Hammarsund M, Wilson W, Corcoran M, Merup M, Einhorn S, Grander D, Sangfelt O: Identification and characterization of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution. Human Gen 2001, 109:542-550.
  • [75]Lignitto L, Carlucci A, Sepe M, Stefan E, Cuomo O, Nistico R, Scorziello A, Savoia C, Garbi C, Annunziato L, et al.: Control of PKA stability and signalling by the RING ligase praja2. Nat Cell Biol 2011, 13(4):412-422.
  • [76]Aplin AE, Howe A, Alahari SK, Juliano RL: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 1998, 50(2):197-262.
  • [77]Zhao Y, Zhou L, Liu B, Deng Y, Wang Y, Wang Y, Huang W, Yuan W, Wang Z, Zhu C, et al.: ZNF325, a novel human zinc finger protein with a RBaK-like RB-binding domain, inhibits AP-1- and SRE-mediated transcriptional activity. Biochem Biophysic Res Comm 2006, 346:1191-1199.
  • [78]Hallier M, Tavitian A, Moreau-Gachelinss F: The transcription factor Spi-1/PU.1 binds RNA and interferes with the RNA-binding protein p54nrb*. J Biol Chem 1996, 271(19):11177-11181.
  • [79]Yelo E, Bernardo MV, Gimeno L, Alcaraz-Garcia MJ, Majado MJ, Parrado A: Dock10, a novel CZH protein selectively induced by interleukin-4 in human B lymphocytes. Mole Immunol 2008, 45(12):3411-3418.
  • [80]Jutooru I, Chadalapaka G, Lei P, Safe S: Inhibition of NF-κB and pancreatic cancer cell and tumor growth by curcumin is dependent on specificity protein down-regulation. J Biol Chem 2012, 285(33):25332-25344.
  • [81]Dailey HA, Sellers VM, Dailey TA: Mammalian ferrochelatase. J Biol Chem 1994, 269(1):390-395.
  • [82]Ho TH, Charlet-B M, Poulos MG, Siingh G, Swanson MS, Cooper TA: Muscleblind proteins regulate alternative splicing. Eur Mole Biol Org J 2004, 23:3103-3112.
  • [83]Jeong SM, Lee C, Lee SK, Kim J, Seong RH: The SWI/SNF chromatin-remodeling complex modulates peripheral T cell activation and proliferation by controlling AP-1 expression. J Biol Chem 2010, 285(4):2340-2350.
  • [84]Matthews SA, Dayalu R, Thompson LJ, Scharenberg AM: Regulation of protein kinase Cv by the B-cell antigen receptor. J Biol Chem 2003, 278(11):9086-9091.
  • [85]Zhu Y, Xu G, Patel A, McLaughlin MM, Silverman C, Knecht KSS, Li X, McDonnell P, Mirabile R, et al.: Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics 2002, 80(2):144-150.
  • [86]Kim S, Xu X, Hecht A, Boyer TG: Mediator is a transducer of Wnt/B-catenin signaling. J Biol Chem 2006, 281(20):14066-14075.
  • [87]Chang X, Yamada R, Suzuki A, Sawada T, Yoshino S, Tokuhiro S, Yamamoto K: Localization of peptidylarginine deiminase 4 (PADI4) and citrullinated protein in synovial tissue of rheumatoid arthritis. Rheumatology 2005, 44(1):40-50.
  • [88]Gunster MJ, Satijn DP, Hamer KM, den Blaauwen JL, de Bruijn D, Alkema MJ, van Lohuizen M, van Driel R, Otte AP: Identification and characterization of interactions between the vertebrate polycomb-group protein BMI1 and human homologs of polyhomeotic. Mole Cell Biol 1997, 17(4):2326-2335.
  • [89]Ohnishi T, Ohba H, Seo K-C, Im J, Sato Y, Iwayama Y, Furuichi T, Chung S-K, Takeo Y: Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J Biol Chem 2007, 282(1):637-646.
  • [90]Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J: The class II molecules of the human and murine major histocompatibility complex. Cell 1984, 36(1):1-13.
  • [91]Krucken J, Schroetel R, Muller I, Saidani N, Marinovski P, Benten W, Stamm O, Underlich F: Coomparative analysis of the human gimap gene cluster encoding a novel GTPase family. Gene 2004, 341:291-304.
  • [92]Wang H, Bloom O, Zhang M, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, et al.: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999, 285(5425):248-251.
  • [93]Leclerc E, Fritz G, Vetter SW, Heizmann CW: Binding of S100 proteins to RAGE: an update. Biochim Biophys Acta 2009, 1793:993-1007.
  • [94]Chiu Y-H, Sun Q, Chen ZJ: E1-L2 activates both ubiquitin and FAT10. Mol Cell 2007, 27:1014-1023.
  • [95]Yowe D, Weich N, Prabhudas M, Poisson L, Errada P, Kapeller R, Yu K, Faron L, Shen M, Cleary J, et al.: RGS18 is a myeloerythroid lineage-specific regulator of G-protein-signalling molecule highly expressed in megakaryocytes. Biochem J (England) 2001, 359(Pt 1):109-118.
  • [96]Carnegie GK, Sleeman JE, Morrice N, Hastie CJ, Peggie MW, Philp A, Lamond AI, Cohen PT: Protein phosphatase 4 interacts with the Survival of Motor Neurons complex and enhances the temporal localisation of snRNPs. J Cell Sci 2003, 116(Pt 10):1905-1913.
  • [97]Pensa S, Regis G, Boselli D, Novelli F, Poli V: STAT1 and STAT3 in tumorigenesis: two sides of the same coin? In JAK-STAT Pathway in Disease. Edited by Stephanou A. Austin: Landes Bioscience; 2009:100-121.
  • [98]Debierre-Grockiego F: Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 2004, 9(6):717-728.
  • [99]Guo TL, Zhang LX, Chen JP, Nguyen VA, White KL, Gao B: Differential STAT5 activation and phenotypic marker expression by immune cells following low levels of ethanol consumption in mice. Immunopharmacol Immunotoxicol 2002, 24(1):121-138.
  • [100]Muller S, Ronfani L, Bianchi ME: Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Int Med 2004, 255(3):332-343.
  • [101]Kokkola R, Andersson A, Mullins G, Ostberg T, Treutiger CJ, Arnold B, Nawroth P, Andersson U, Harris RA, Harris HE: RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005, 61(1):1-9.
  • [102]Donato R: S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellualr and extracellular fruntional roles. Int J Biochem Cell Biol 2001, 33(7):637-668.
  • [103]Ros J, Libbrecht L, Geuken M, Jansen P, Roskams T: High expression of MDR1, MRP1, and MRP3 in the hapatic progenitor cell compartment and hepatocytes in severe human liver disease. J Pathol 2003, 200(5):553-560.
  • [104]Bennett EP, Hassan H, Hollingsworth MA, Clausen H: A novel human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates. FEBS Lett 1999, 460(2):226-230.
  • [105]Kummer C, Petrich BG, Rose DM, Ginsberg MH: A small molecule that inhibits the interaction of paxillin and alpha4 integrin inhibits accumulation of mononuclear leukocytes at a site of inflammation. J Biol Chem 2010, 285(13):9462-9469.
  • [106]Keiver K, Duggal S, Simpson ME: Ethanol administration results in a prolonged decrease in blood ionized calcium levels in the rat. Alcohol 2005, 37:173-178.
  • [107]Machaca K: Ca2+ signaling, genes and the cell cycle. Cell Calcium 2010, 48:243-250.
  • [108]Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, et al.: RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands and their role in cancer and inflammation. J Trans Med 2009, 7(17):1-21.
  • [109]Brown AM, Linhoff MW, Stein B, Wright KL, Baldwin AS, Basta PV, Ting JP-Y: Function of NF-κB/rel binding sites in the major histocompatibility complex class II invariant chain promoter is dependent on cell-specific binding of different NF-κB/rel subunits. Mole Cell Biol 1994, 14(5):2926-2935.
  • [110]Fernandez-Lizarbe S, Pascual M, Gascon MS, Blanco A, Guerri C: Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages. Mole Immunol 2008, 45(7):2007-2016.
  文献评价指标  
  下载次数:46次 浏览次数:19次