期刊论文详细信息
BMC Cancer
Identification of the IGF1/PI3K/NF κB/ERK gene signalling networks associated with chemotherapy resistance and treatment response in high-grade serous epithelial ovarian cancer
Jeremy A Squire6  Paul C Park4  Harriet E Feilotter4  Kenneth Evans8  Moyez Dharsee8  Peter Bryson1  Timothy Childs4  Johanne Weberpals5  Colleen Crane2  Alexandria Haslehurst4  Paulo Nuin8  Robert J Gooding3  Madhuri Koti7 
[1]Department of Obstetrics and Gynecology, Queen’s University, Kingston, ON, Canada
[2]Department of Pathology, The Ottawa Hospital, Ottawa, ON, Canada
[3]Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON, Canada
[4]Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON, Canada
[5]Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
[6]Departments of Genetics and Pathology, Faculdade de Medicina de Ribeirão Preto, University of Sao Paulo, Brazil
[7]Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
[8]Ontario Cancer Biomarker Network, Toronto, ON, Canada
关键词: Microarray;    Gene expression;    Biomarkers;    Chemotherapy resistance;    Ovarian cancer;   
Others  :  859249
DOI  :  10.1186/1471-2407-13-549
 received in 2013-07-17, accepted in 2013-10-31,  发布年份 2013
PDF
【 摘 要 】

Background

Resistance to platinum-based chemotherapy remains a major impediment in the treatment of serous epithelial ovarian cancer. The objective of this study was to use gene expression profiling to delineate major deregulated pathways and biomarkers associated with the development of intrinsic chemotherapy resistance upon exposure to standard first-line therapy for ovarian cancer.

Methods

The study cohort comprised 28 patients divided into two groups based on their varying sensitivity to first-line chemotherapy using progression free survival (PFS) as a surrogate of response. All 28 patients had advanced stage, high-grade serous ovarian cancer, and were treated with standard platinum-based chemotherapy. Twelve patient tumours demonstrating relative resistance to platinum chemotherapy corresponding to shorter PFS (< eight months) were compared to sixteen tumours from platinum-sensitive patients (PFS > eighteen months). Whole transcriptome profiling was performed using an Affymetrix high-resolution microarray platform to permit global comparisons of gene expression profiles between tumours from the resistant group and the sensitive group.

Results

Microarray data analysis revealed a set of 204 discriminating genes possessing expression levels which could influence differential chemotherapy response between the two groups. Robust statistical testing was then performed which eliminated a dependence on the normalization algorithm employed, producing a restricted list of differentially regulated genes, and which found IGF1 to be the most strongly differentially expressed gene. Pathway analysis, based on the list of 204 genes, revealed enrichment in genes primarily involved in the IGF1/PI3K/NF κB/ERK gene signalling networks.

Conclusions

This study has identified pathway specific prognostic biomarkers possibly underlying a differential chemotherapy response in patients undergoing standard platinum-based treatment of serous epithelial ovarian cancer. In addition, our results provide a pathway context for further experimental validations, and the findings are a significant step towards future therapeutic interventions.

【 授权许可】

   
2013 Koti et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724091148772.pdf 1153KB PDF download
80KB Image download
25KB Image download
96KB Image download
76KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mantia-Smaldone GM, Edwards RP, Vlad AM: Targeted treatment of recurrent platinum-resistant ovarian cancer: current and emerging therapies. Cancer Manag Res 2011, 3:25-38.
  • [2]Ushijima K: Treatment for recurrent ovarian cancer-at first relapse. J Oncol 2010, 2010:497429.
  • [3]Berns EM, Bowtell DD: The changing view of high-grade serous ovarian cancer. Cancer Res 2012, 72(11):2701-2704.
  • [4]Shih I, Kurman RJ: Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004, 164(5):1511-1518.
  • [5]Karst AM, Drapkin R: Ovarian cancer pathogenesis: a model in evolution. J Oncol 2010, 2010:932371.
  • [6]Vaughan S, Coward JI, Jr Bast RC, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, Friedlander M, Gabra H, Kaye SB, Lord CJ, Lengyel E, Levine DA, McNeish IA, Menon U, Mills GB, Nephew KP, Oza AM, Sood AK, Stronach EA, Walczak H, Bowtell DD, Balkwill FR: Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer 2011, 11(10):719-725.
  • [7]Gatti L, Zunino F: Overview of tumor cell chemoresistance mechanisms. Methods Mol Med 2005, 111:127-148.
  • [8]Cooke SL, Brenton JD: Evolution of platinum resistance in high-grade serous ovarian cancer. Lancet Oncol 2011, 12(12):1169-1174.
  • [9]Barrena Medel NI, Wright JD, Herzog TJ: Targeted therapies in epithelial ovarian cancer. J Oncol 2010, 2010:314326.
  • [10]Bachvarov D, L’esperance S, Popa I, Bachvarova M, Plante M, Tetu B: Gene expression patterns of chemoresistant and chemosensitive serous epithelial ovarian tumors with possible predictive value in response to initial chemotherapy. Int J Oncol 2006, 29(4):919-933.
  • [11]Fekete T, Raso E, Pete I, Tegze B, Liko I, Munkacsy G, Sipos N, Rigojr J, Gyorffy B: Meta-analysis of gene expression profiles associated with histological classification and survival in 829 ovarian cancer samples. Int J Cancer 2012, 1:95-105.
  • [12]Sakamoto M, Kondo A, Kawasaki K, Goto T, Sakamoto H, Miyake K, Koyamatsu Y, Akiya T, Iwabuchi H, Muroya T, Ochiai K, Tanaka T, Kikuchi Y, Tenjin Y: Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray. Hum Cell 2001, 14(4):305-315.
  • [13]Selvanayagam ZE, Cheung TH, Wei N, Vittal R, Lo KW, Yeo W, Kita T, Ravatn R, Chung TK, Wong YF, Chin KV: Prediction of chemotherapeutic response in ovarian cancer with DNA microarray expression profiling. Cancer Genet Cytogenet 2004, 154(1):63-66.
  • [14]Bernardini M, Lee CH, Beheshti B, Prasad M, Albert M, Marrano P, Begley H, Shaw P, Covens A, Murphy J, Rosen B, Minkin S, Squire JA, Macgregor PF: High-resolution mapping of genomic imbalance and identification of gene expression profiles associated with differential chemotherapy response in serous epithelial ovarian cancer. Neoplasia 2005, 7(6):603-613.
  • [15]L’Esperance S, Popa I, Bachvarova M, Plante M, Patten N, Wu L, Tetu B, Bachvarov D: Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors. Int J Oncol 2006, 29(1):5-24.
  • [16]Osterberg L, Levan K, Partheen K, Delle U, Olsson B, Sundfeldt K, Horvath G: Potential predictive markers of chemotherapy resistance in stage III ovarian serous carcinomas. BMC Cancer 2009, 9:368.
  • [17]Helleman J, Smid M, Jansen MP, van der Burg ME, Berns EM: Pathway analysis of gene lists associated with platinum-based chemotherapy resistance in ovarian cancer: the big picture. Gynecol Oncol 2010, 117(2):170-176.
  • [18]Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, Diehn M, Wang YC, Duran GE, Sikic TL, Caldeira S, Skomedal H, Tu IP, Hernandez-Boussard T, Johnson SW, O’Dwyer PJ, Fero MJ, Kristensen GB, Borresen-Dale AL, Hastie T, Tibshirani R, van de Rijn M, Teng NN, Longacre TA, Botstein D, Brown PO, Sikic BI: Gene expression patterns in ovarian carcinomas. Mol Biol Cell 2003, 14(11):4376-4386.
  • [19]Jazaeri AA, Awtrey CS, Chandramouli GV, Chuang YE, Khan J, Sotiriou C, Aprelikova O, Yee CJ, Zorn KK, Birrer MJ, Barrett JC, Boyd J: Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin Cancer Res 2005, 11(17):6300-6310.
  • [20]Roberts D, Schick J, Conway S, Biade S, Laub PB, Stevenson JP, Hamilton TC, O’Dwyer PJ, Johnson SW: Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells. Br J Cancer 2005, 92(6):1149-1158.
  • [21]Kauffmann A, Gentleman R, Huber W: arrayQualityMetrics – a bioconductor package for quality assessment of microarray data. Bioinformatics 2009, 25(3):415-416.
  • [22]Gautier L, Cope L, Bolstad BM, Irizarry RA: affy – Analysis of affymetrix GeneChip data at the probe level. Bioinformatics 2004, 20(3):307-315.
  • [23]Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LACJ, Peeters AJM: How does one decide? Different methods of calculating gene expression from short oligonucleotide arrays will give different results. BMC Informatics 2006, 7:137.
  • [24]Li C, Wong WH: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001, 98:31-36.
  • [25]Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004, 99:909.
  • [26]Schmittgen TD, Livak KJ: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Nat Protoc 2008, 3(6):1101-1108.
  • [27]Stephanie Schneider W, Smith T, Hansen U: SCOREM: statistical consolidation of redundant expression measures. Nucleic Acids Res 2012, 40(6):e46.
  • [28]Verhaak RGW, Sanders MA, Bijl MA, Delwel R, Horsman S, Moorhouse MJ, van der Spek PJ, Löwenberg B, Valk PJM: HeatMapper: powerful combined visualization of gene expression profile correlations, genotypes, phenotypes and sample characteristics. BMC Bioninformatics 2006, 7:33.
  • [29]Myers JL, Well AD: Research design and statistical analysis (2nd ed). Mahwah, NJ: LEA; 2003.
  • [30]Pollack M: The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012, 12(3):159-69.
  • [31]Alokail MS, Al-Daghri NM, Al-Attas OS, Alkharfy KM, Sabico SB, Ullrich A: Visceral obesity and inflammation markers in relation to serum prostate volume biomarkers among apparently healthy men. Eur J Clin Invest 2011, 41(9):987-994.
  • [32]Price AJ, Allen NE, Appleby PN, Crowe FL, Travis RC, Tipper SJ, Overvad K, Gronbaek H, Tjonneland A, Johnsen NF, Rinaldi S, Kaaks R, Lukanova A, Boeing H, Aleksandrova K, Trichopoulou A, Trichopoulos D, Andarakis G, Palli D, Krogh V, Tumino R, Sacerdote C, Bueno-de-Mesquita HB, Arguelles MV, Sanchez MJ, Chirlaque MD, Barricarte A, Larranaga N, Gonzalez CA, Stattin P, et al.: Insulin-like growth factor-I concentration and risk of prostate cancer: results from the, European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2012, 21(9):1531-1541.
  • [33]Park SL, Setiawan VW, Kanetsky PA, Zhang ZF, Wilkens LR, Kolonel LN, Le Marchand L: Serum insulin-like growth factor-I and insulin-like growth factor binding protein-3 levels with risk of malignant melanoma. Cancer Causes Control 2011, 22(9):1267-1275.
  • [34]Gao Y, Katki H, Graubard B, Pollak M, Martin M, Tao Y, Schoen RE, Church T, Hayes RB, Greene MH, Berndt SI: Serum IGF1, IGF2 and IGFBP3 and risk of advanced colorectal adenoma. Int J Cancer 2012, 131(2):E105-13.
  • [35]Al-Delaimy WK, Flatt SW, Natarajan L, Laughlin GA, Rock CL, Gold EB, Caan BJ, Parker BA, Pierce JP: IGF1 and risk of additional breast cancer in the WHEL study. Endocr Relat Cancer 2011, 18(2):235-244.
  • [36]Rowlands MA, Holly JM, Hamdy F, Phillips J, Goodwin L, Marsden G, Gunnell D, Donovan J, Neal DE, Martin RM: Serum insulin-like growth factors and mortality in localised and advanced clinically detected prostate cancer. Cancer Causes Control 2012, 23(2):347-354.
  • [37]Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008, 2(3):274-283.
  • [38]Ashihara E, Kawata E, Nakagawa Y, Shimazaski C, Kuroda J, Taniguchi K, Uchiyama H, Tanaka R, Yokota A, Takeuchi M, Kamitsuji Y, Inaba T, Taniwaki M, Kimura S, Maekawa T: β-catenin small interfering RNA successfully suppressed progression of multiple myeloma in a mouse model. Clin Cancer Res 2009, 15(8):2731-2738.
  • [39]Artim SC, Mendrola JM, Lemmon MA: Assessing the range of kinase autoinhibition mechanisms in the insulin receptor family. Biochem J 2012, 448(2):213-220.
  • [40]Pierre-Eugene C, Pagesy P, Nguyen TT, Neuille M, Tschank G, Tennagels N, Hampe C, Issad T: Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 2012, 7(7):e41992.
  • [41]Gualberto A, Pollak M: Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene 2009, 28(34):3009-3021.
  • [42]Alvino CL, Ong SC, McNeil KA, Delaine C, Booker GW, Wallace JC, Forbes BE: Understanding the mechanism of insulin and insulin-like growth factor (IGF) receptor activation by IGF-II. PLoS One 2011, 6(11):e27488.
  • [43]Tzivion G, Dobson M, Ramakrishnan G: FoxO transcription factors; regulation by AKT and 14–3-3 proteins. Biochim Biophys Acta 2011, 1813(11):1938-1945.
  • [44]Kalra N, Zhang J, Yu Y, Ho M, Merino M, Cao L, Hassan R: Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell. Int J Cancer 2012, 131(9):2143-2152.
  • [45]Serin IS, Tanriverdi F, Yilmaz MO, Ozcelik B, Unluhizarci K: Serum insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3, leptin concentrations and insulin resistance in benign and malignant epithelial ovarian tumors in postmenopausal women. Gynecol Endocrinol 2008, 24:117-121.
  • [46]King ER, Zu Z, Tsang YT, Deavers MT, Malpica A, Mok SC, Gershenson DM, Wong KK: The insulin-like growth factor 1 pathway is a potential therapeutic target for low-grade serous ovarian carcinoma. Gynecol Oncol 2011, 123(1):13-18.
  • [47]Lau MT, Leung PC: The PI3K/Akt/mTOR signaling pathway mediates insulin-like growth factor 1-induced E-cadherin down-regulation and cell proliferation in ovarian cancer cells. Cancer Lett 2012, 326(2):191-198.
  • [48]Conover CA, Hartmann LC, Bradley S, Stalboerger P, Klee GG, Kalli KR, Jenkins RB: Biological characterization of human epithelial ovarian carcinoma cells in primary culture: the insulin-like growth factor system. Exp Cell Res 1998, 238:439-449.
  • [49]Eckstein N, Servan K, Hildebrandt B, Pölitz A, von Jonquirés G, Wolf-Kümmeth S, Napierski I, Hamacher A, Kassack MU, Budczies J, Beier M, Dietel M, Royer-Pokora B, Denkert C, Royer HD: Hyperactivation of the insulin-like growth factor receptor I signaling pathway is an essential event for cisplatin resistance of ovarian cancer cells. Cancer Res 2009, 69:2996-3003.
  • [50]Buck E, Gokhale PC, Koujak S, Brown E, Eyzaguirre A, Tao N, Rosenfeld-Franklin M, Lerner L, Chiu MI, Wild R, Epstein D, Pachter JA, Miglarese MR: Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer. Mol Cancer Ther 2010, 9(10):2652-64.
  • [51]Zhao H, Desai V, Wang J, Epstein D, Miglarese M, Buck E: Epithelial-mesenchymal transition predicts sensitivity to the dual IGF-1R/IR inhibitor OSI-906 in hepatocellular carcinoma cell lines. Mol Cancer Ther 2012, 11:503-13.
  • [52]Chao SY, Chiang JH, Huang AM, Chang WS: An integrative approach to identifying cancer chemoresistance-associated pathways. BMC Med Genomics 2011, 4:23.
  • [53]Lee S, Choi EJ, Jin C, Kim DH: Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol 2005, 97(1):26-34.
  • [54]Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, Rosner J, Shumansky K, Kalloger S, Senz J, Yang W, McConechy M, Melnyk N, Anglesio M, Luk MT, Tse K, Zeng T, Moore R, Zhao Y, Marra MA, Gilks B, Yip S, Huntsman DG, McAlpine JN: Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol 2013,. doi: 10.1002/path.4230
  • [55]De Cecco L, Marchionni L, Gariboldi M, Reid JF, Lagonigro MS, Caramuta S, Ferrario C, Bussani E, Mezzanzanica D, Turatti F, Delia D, Daidone MG, Oggionni M, Bertuletti N, Ditto A, Raspagliesi F, Pilotti S, Pierotti MA, Canevari S, Schneider C: Gene expression profiling of advanced ovarian cancer: characterization of a molecular signature involving fibroblast growth factor 2. Oncogene 2004, 23(49):8171-8183.
  • [56]Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G, Tothill R, Okamoto A, Raeder MB, Harnett P, Lade S, Akslen LA, Tinker AV, Locandro B, Alsop K, Chiew YE, Traficante N, Fereday S, Johnson D, Fox S, Sellers W, Urashima M, Salvesen HB, Meyerson M, Bowtell D: AOCS Study Group: Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009, 15(4):1417-1427.
  • [57]Ju W, Yoo BC, Kim IJ, Kim JW, Kim SC, Lee HP: Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 2009, 18(2-3):47-56.
  • [58]Barlin JN, Jelinic P, Olvera N, Bogomolniy F, Bisogna M, Dao F, Barakat RR, Chi DS, Levine DA: Validated gene targets associated with curatively treated advanced serous ovarian carcinoma. Gynecol Oncol 2013, 128(3):512-7. doi:10.1016/j.ygyno.2012.11.018. Epub 2012 Nov 17.
  • [59]Rosen DG, Yang G, Deavers MT, Malpica A, Kavanagh JJ, Mills GB, Liu J: Cyclin E expression is correlated with tumor progression and predicts a poor prognosis in patients with ovarian carcinoma. Cancer 2006, 106(9):1925-1932.
  • [60]Kaur M, Agarwal R: Transcription factors: molecular targets for prostate cancer intervention by phytochemicals. Curr Cancer Drug Targets 2007, 7(4):355-67.
  文献评价指标  
  下载次数:52次 浏览次数:32次