期刊论文详细信息
BMC Genomics
Prophage-like elements present in Mycobacterium genomes
Jianping Xie1  Wu Li1  Longxiang Xie1  Xiangyu Fan1 
[1] Institute of Modern Biopharmaceuticals, State Key Laboratory breeding base of Three Gorges Eco-environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 400715 Chongqing, China
关键词: Comparative genomics;    Phylogeny;    Mycobacterioprophage;    Prophage;   
Others  :  1217599
DOI  :  10.1186/1471-2164-15-243
 received in 2013-08-04, accepted in 2014-03-24,  发布年份 2014
PDF
【 摘 要 】

Background

Prophages, integral components of many bacterial genomes, play significant roles in cognate host bacteria, such as virulence, toxin biosynthesis and secretion, fitness cost, genomic variations, and evolution. Many prophages and prophage-like elements present in sequenced bacterial genomes, such as Bifidobacteria, Lactococcus and Streptococcus, have been described. However, information for the prophage of Mycobacterium remains poorly defined.

Results

In this study, based on the search of the complete genome database from GenBank, the Whole Genome Shotgun (WGS) databases, and some published literatures, thirty-three prophages were described in detail. Eleven of them were full-length prophages, and others were prophage-like elements. Eleven prophages were firstly revealed. They were phiMAV_1, phiMAV_2, phiMmcs_1, phiMmcs_2, phiMkms_1, phiMkms_2, phiBN42_1, phiBN44_1, phiMCAN_1, phiMycsm_1, and phiW7S_1. Their genomes and gene contents were firstly analyzed. Furthermore, comparative genomics analyses among mycobacterioprophages showed that full-length prophage phi172_2 belonged to mycobacteriophage Cluster A and the phiMmcs_1, phiMkms_1, phiBN44_1, and phiMCAN_1 shared high homology and could be classified into one group.

Conclusions

To our knowledge, this is the first systematic characterization of mycobacterioprophages, their genomic organization and phylogeny. This information will afford more understanding of the biology of Mycobacterium.

【 授权许可】

   
2014 Fan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150707100834357.pdf 2006KB PDF download
Figure 5. 56KB Image download
Figure 4. 109KB Image download
Figure 3. 165KB Image download
Figure 2. 123KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Varani AM, Monteiro-Vitorello CB, Nakaya HI, Van Sluys MA: The role of prophage in plant-pathogenic bacteria. Annu Rev Phytopathol 2013, 51:429-451.
  • [2]Casjens S: Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 2003, 49(2):277-300.
  • [3]Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H: Prophage genomics. Microbiol Mol Biol Rev 2003, 67(2):238-276.
  • [4]Zou QH, Li QH, Zhu HY, Feng Y, Li YG, Johnston RN, Liu GR, Liu SL: SPC-P1: a pathogenicity-associated prophage of Salmonella paratyphi C. BMC Genomics 2010, 11:729. BioMed Central Full Text
  • [5]Fortier LC, Sekulovic O: Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013, 4(5):354-365.
  • [6]Sassi M, Bebeacua C, Drancourt M, Cambillau C: The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii phage Araucaria. J Virol 2013, 87(14):8099-8109.
  • [7]Hatfull GF: Complete genome sequences of 138 mycobacteriophages. J Virol 2012, 86(4):2382-2384.
  • [8]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393(6685):537-544.
  • [9]Stinear TP, Seemann T, Pidot S, Frigui W, Reysset G, Garnier T, Meurice G, Simon D, Bouchier C, Ma L, Tichit M, Porter JL, Ryan J, Johnson PD, Davies JK, Jenkin GA, Small PL, Jones LM, Tekaia F, Laval F, Daffe M, Parkhill J, Cole ST: Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 2007, 17(2):192-200.
  • [10]Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, et al.: Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 2008, 18(5):729-741.
  • [11]Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym B, Herrmann JL, Daffe M, Brosch R, Risler JL, Gaillard JL: Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PLoS One 2009, 4(6):e5660.
  • [12]Chan J, Halachev M, Yates E, Smith G, Pallen M: Whole-genome sequence of the emerging pathogen Mycobacterium abscessus strain 47J26. J Bacteriol 2012, 194(2):549.
  • [13]Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF: Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 2013, 49(2):237-248.
  • [14]Choo SW, Yusoff AM, Wong YL, Wee WY, Ong CS, Ng KP, Ngeow YF: Genome analysis of Mycobacterium massiliense strain M172, which contains a putative mycobacteriophage. J Bacteriol 2012, 194(18):5128.
  • [15]Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, et al.: Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 2013, 45(2):172-179.
  • [16]Sassi M, Robert C, Raoult D, Drancourt M: Non-contiguous genome sequence of Mycobacterium simiae strain DSM 44165(T.). Stand Genomic Sci 2013, 8(2):306-317.
  • [17]Ventura M, Zomer A, Canchaya C, O'Connell-Motherway M, Kuipers O, Turroni F, Ribbera A, Foroni E, Buist G, Wegmann U, Shearman C, Gasson MJ, Fitzgerald GF, Kok J, van Sinderen D: Comparative analyses of prophage-like elements present in two Lactococcus lactis strains. Appl Environ Microbiol 2007, 73(23):7771-7780.
  • [18]Ventura M, Turroni F, Lima-Mendez G, Foroni E, Zomer A, Duranti S, Giubellini V, Bottacini F, Horvath P, Barrangou R, Sela DA, Mills DA, van Sinderen D: Comparative analyses of prophage-like elements present in bifidobacterial genomes. Appl Environ Microbiol 2009, 75(21):6929-6936.
  • [19]Ventura M, Canchaya C, Pridmore D, Berger B, Brüssow H: Integration and distribution of Lactobacillus johnsonii prophages. J Bacteriol 2003, 185(15):4603-4608.
  • [20]Ventura M, Canchaya C, Kleerebezem M, de Vos WM, Siezen RJ, Brüssow H: The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 2003, 316(2):245-255.
  • [21]Ventura M, Turroni F, Foroni E, Duranti S, Giubellini V, Bottacini F, van Sinderen D: Analyses of bifidobacterial prophage-like sequences. Antonie Van Leeuwenhoek 2010, 98(1):39-50.
  • [22]Ventura M, Lee JH, Canchaya C, Zink R, Leahy S, Moreno-Munoz JA, O'Connell-Motherway M, Higgins D, Fitzgerald GF, O'Sullivan DJ, van Sinderen D: Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl Environ Microbiol 2005, 71(12):8692-8705.
  • [23]Zhao Y, Wang K, Ackermann HW, Halden RU, Jiao N, Chen F: Searching for a “hidden” prophage in a marine bacterium. Appl Environ Microbiol 2010, 76(2):589-595.
  • [24]Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS: PHAST: a fast phage search tool. Nucleic Acids Res 2011, 39(Web Server issue):W347-W352.
  • [25]Fouts DE: Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 2006, 34(20):5839-5851.
  • [26]Lima-Mendez G, Van Helden J, Toussaint A, Leplae R: Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 2008, 24(6):863-865.
  • [27]Bose M, Barber RD: Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 2006, 6(3):223-227.
  • [28]Akhter S, Aziz RK, Edwards RA: PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 2012, 40(16):e126.
  • [29]Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH: Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010, 397(1):119-143.
  • [30]Silverman JM, Brunet YR, Cascales E, Mougous JD: Structure and regulation of the type VI secretion system. Annu Rev Microbiol 2012, 66:453-472.
  • [31]Das S, Chakrabortty A, Banerjee R, Chaudhuri K: Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun 2002, 295(4):922-928.
  • [32]de Pace F, Boldrin de Paiva J, Nakazato G, Lancellotti M, Sircili MP, Guedes Stehling E, Dias da Silveira W, Sperandio V: Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain. Microbiology 2011, 157(Pt 10):2954-2962.
  • [33]Bibb LA, Hatfull GF: Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol Microbiol 2002, 45(6):1515-1526.
  • [34]Delcher AL, Bratke KA, Powers EC, Salzberg SL: Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23(6):673-679.
  • [35]Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005, 33(Web Server issue):W686-W689.
  • [36]Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004, 32(1):11-16.
  • [37]Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28(12):1647-1649.
  • [38]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
  文献评价指标  
  下载次数:56次 浏览次数:23次