期刊论文详细信息
BMC Structural Biology
Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase
Debasish Chattopadhyay3  Robert Ricciardi2  Surajit Banerjee1  Norbert Schormann3 
[1] Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Chicago 60439, IL, USA;Department of Microbiology, School of Dental Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia 19104, PA, USA;Department of Medicine, University of Alabama at Birmingham, Birmingham 35294, AL, USA
关键词: Poxvirus;    Uracil-DNA glycosylase;    Early DNA recognition complex;    Non-specific DNA;    Protein-DNA structure;   
Others  :  1210284
DOI  :  10.1186/s12900-015-0037-1
 received in 2015-01-21, accepted in 2015-05-21,  发布年份 2015
PDF
【 摘 要 】

Background

Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized.

Results

This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. Comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms.

Conclusion

The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.

【 授权许可】

   
2015 Schormann et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150605025811906.pdf 2001KB PDF download
Fig. 8. 74KB Image download
Fig. 7. 166KB Image download
Fig. 6. 62KB Image download
Fig. 5. 53KB Image download
Fig. 4. 56KB Image download
Fig. 3. 68KB Image download
Fig. 2. 51KB Image download
Fig. 1. 55KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Nilsen H, Krokan HE: Base excision repair in a network of defense and tolerance. Carcinogenesis 2001, 22:987-98.
  • [2]Jacobs AL, Schȁr P: DNA glycosylases in DNA repair and beyond. Chromosoma 2012, 121:1-20.
  • [3]Visnes T, Doseth B, Sahlin Pettersen H, Hagen L, Sousa MML, Akbari M, et al.: Uracil in DNA and its processing by different DNA glycosylases. Phil Trans R Soc Lond B 2009, 364:563-8.
  • [4]Schormann N, Ricciardi R, Chattopadhyay D: Uracil-DNA glycosylases – Structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 2014, 23:1667-85.
  • [5]Pearl LH: Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res 2000, 460:165-81.
  • [6]Parikh SS, Mol CD, Slupphaug G, Bharati S, Krokan HE, Tainer JA: Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J 1998, 17:5214-26.
  • [7]Parikh SS, Walcher G, Jones CD, Slupphaug G, Krokan HE, Blackburn GM, et al.: Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proc Natl Acad Sci U S A 2000, 97:5083-8.
  • [8]Werner RM, Jiang YL, Gordley RG, Jagadeesh GJ, Ladner JE, Xiao G, et al.: Stressing-out DNA? The contribution of serine-phosphodiester interactions in catalysis by uracil DNA glycosylase. Biochemistry 2000, 39:12585-94.
  • [9]Jiang YL, Stivers JT: Mutational analysis of the base-flipping mechanism of uracil DNA glycosylase. Biochemistry 2002, 41:11236-47.
  • [10]Slupphaug G, Mol CD, Kavli B, Arvai AS, Krokan HE, Tainer JA: A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 1996, 384:87-92.
  • [11]Savva R, McAuley-Hecht K, Brown T, Pearl L: The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 1995, 373:487-93.
  • [12]Parker JP, Bianchet MA, Krosky DJ, Friedman JI, Amzel LM, Stivers JT: Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature 2007, 449:433-8.
  • [13]Schormann N, Grigorian A, Samal A, Krishnan R, DeLucas L, Chattopadhyay D: Crystal structure of vaccinia virus uracil-DNA glycosylase reveals dimeric assembly. BMC Struct Biol 2007, 7:45. BioMed Central Full Text
  • [14]Schormann N, Banerjee S, Ricciardi R, Chattopadhyay D: Structure of the uracil complex of vaccinia virus uracil DNA glycosylase. Acta Cryst F 2013, 69:1328-34.
  • [15]De Silva FS, Moss B: Vaccinia virus uracil DNA glycosylase has an essential role in DNA synthesis that is independent of its glycosylase activity: catalytic site mutations reduce virulence but not virus replication in cultured cells. J Virol 2003, 77:159-66.
  • [16]Ishii K, Moss B: Mapping interaction sites of the A20R protein component of the vaccinia virus DNA replication complex. Virology 2002, 303:232-9.
  • [17]Stanitsa ES, Arps L, Traktman P: Vaccinia virus uracil DNA glycosylase interacts with the A20 protein to form a heterodimeric processivity factor for the viral DNA polymerase. J Biol Chem 2006, 281:3439-51.
  • [18]Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P: Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. J Biol Chem 2011, 286:24702-13.
  • [19]Sèle C, Gabel F, Gutsche I, Ivanov I, Burmeister WP, Iseni F, et al.: Low- resolution structure of vaccinia virus DNA replication machinery. J Virol 2013, 87:1679-89.
  • [20]Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X, Burmeister WP, et al.: Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLoS Pathog 2014, 10:e1003978.
  • [21]McDonald WF, Traktman P: Vaccinia virus DNA polymerase. In vitro analysis of parameters affecting processivity. J Biol Chem 1994, 269:31190-7.
  • [22]Druck Shudofsky AM, Silverman JE, Chattopadhyay D, Ricciardi RP: Vaccinia virus D4 mutants defective in processive DNA synthesis retain binding to A20 and DNA. J Virol 2010, 84:12325-35.
  • [23]Scaramozzino N, Sanz G, Crance JM, Saparbaev M, Drillen R, Laval J, et al.: Characterisation of the substrate specificity of homogenous vaccinia virus uracil-DNA glycosylase. Nucleic Acids Res 2003, 31:4950-7.
  • [24]Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, et al.: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007, 35:W375-83.
  • [25]Zheng G, Lu X-J, Olson WK: Web 3DNA – A web server for the analysis, reconstruction, and visualization of three-dimensional nucleic-acid structures. Nucleic Acids Res 2009, 37:W240-6.
  • [26]Krissinel E, Henrick K: Inference of macromolecular assemblies from crystalline state. J Mol Biol 2007, 372:774-97.
  • [27]Rice PA, Yang S, Mizuuchi K, Nash HA: Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 1996, 87:1295-306.
  • [28]Dürr H, Körner C, Müller M, Hickmann V, Hopfner KP: X-ray structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase core and its complex with DNA. Cell 2005, 121:363-73.
  • [29]Roberts VA, Pique ME, Hsu S, Li S, Slupphaug G, Rambo RP, et al.: Combining H/D exchange mass spectroscopy and computational docking reveals extended DNA-binding surface on uracil-DNA glycosylase. Nucleic Acids Res 2012, 40:6070-81.
  • [30]Cao C, Jiang YL, Stivers JT, Song F: Dynamic opening of DNA during the enzymatic search for a damaged base. Nat Struct Mol Biol 2004, 11:1230-6.
  • [31]Kalodimos CG, Biris N, Bonvin AMJJ, Levandoski MM, Guennuegues M, Boelens R, et al.: Structure and flexibility adaptation in nonspecific and specific protein-DNA complexes. Science 2004, 305:386-9.
  • [32]Viadiu H, Aggarwal AK: Structure of BamHI bound to nonspecific DNA: a model for DNA sliding. Mol Cell 2000, 5:889-95.
  • [33]Zharkov DO, Mechetin GV, Nevinsky GA: Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition. Mutat Res 2010, 685:11-20.
  • [34]Schonhoft JD, Kosowicz J, Stivers JT: DNA translocation by human uracil DNA glycosylase: Role of DNA phosphate charge. Biochemistry 2013, 52:2526-35.
  • [35]Sartmatova D, Nash T, Schormann N, Nuth M, Ricciardi R, Banerjee S, et al.: Crystallization and preliminary X-ray diffraction analysis of three recombinant mutants of Vaccinia virus uracil DNA glycosylase. Acta Cryst F 2013, 69:295-301.
  • [36]Kabsch W: XDS. Acta Cryst D Biol Cryst 2010, 66:125-32.
  • [37]Kabsch W: Integration, scaling, space-group assignment and post-refinement. Acta Cryst D Biol Cryst 2010, 66:133-44.
  • [38]Evans P: Scaling and assessment of data quality. Acta Cryst D Biol Cryst 2006, 62:72-82.
  • [39]Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al.: Overview of the CCP4 suite and current developments. Acta Cryst D Biol Cryst 2011, 67:235-42.
  • [40]Karplus PA, Diederichs K: Linking crystallographic model and data quality. Science 2012, 336:1030-3.
  • [41]Diederichs K, Karplus PA: Better models by discarding data? Acta Cryst D Biol Cryst 2013, 69:1215-22.
  • [42]McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ: Phaser crystallographic software. J Appl Cryst 2007, 40:658-74.
  • [43]Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al.: REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D Biol Cryst 2011, 67:355-67.
  • [44]Emsley P, Cowtan K: Coot: Model-building tools for molecular graphics. Acta Cryst D Biol Cryst 2004, 60:2126-32.
  • [45]Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al.: PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D Biol Cryst 2010, 66:213-21.
  • [46]Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al.: Towards automated crystallographic structure refinement with phenix.refine. Acta Cryst D Biol Cryst. 2012, 68:352-367.
  • [47]Yang H, Guranovic V, Dutta S, Feng Z, Berman HM, Westbrook JD: Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank. Acta Cryst D Biol Cryst 2004, 60:1833-9.
  • [48]Weiss MS: Global indicators of X-ray data quality. J Appl Cryst 2001, 34:130-5.
  • [49]Luscombe NM, Laskowski RA, Thornton JM: NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res 1997, 25:4940-5.
  • [50]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.: UCSF Chimera – A visualization system for exploratory research and analysis. J Comput Chem 2004, 25:1605-12.
  • [51]DeLano WL: PyMOL. Open-Source PyMOLTM, Schrödinger, LLC; 2002.
  文献评价指标  
  下载次数:23次 浏览次数:12次