BMC Genomics | |
Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis | |
Don A Cowan2  David A Mead1  Phillip J Brumm1  Pieter De Maayer3  | |
[1] C5-6 Technologies Inc., Lucigen Corp., 53562 Middleton, WI, USA;Centre for Microbial Ecology and Genomics, Genomics Research Institute, Natural Sciences II Building, University of Pretoria, Pretoria 0002, South Africa;Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa | |
关键词: Arabinofuranose; Acetylesterase; Xylanase; Arabinan; Arabinoxylan; Hemicellulose; Geobacillus; | |
Others : 1139342 DOI : 10.1186/1471-2164-15-836 |
|
received in 2014-06-02, accepted in 2014-09-23, 发布年份 2014 | |
【 摘 要 】
Background
Members of the thermophilic genus Geobacillus can grow at high temperatures and produce a battery of thermostable hemicellulose hydrolytic enzymes, making them ideal candidates for the bioconversion of biomass to value-added products. To date the molecular determinants for hemicellulose degradation and utilization have only been identified and partially characterized in one strain, namely Geobacillus stearothermophilus T-6, where they are clustered in a single genetic locus.
Results
Using the G. stearothermophilus T-6 hemicellulose utilization locus as genetic marker, orthologous hemicellulose utilization (HUS) loci were identified in the complete and partial genomes of 17/24 Geobacillus strains. These HUS loci are localized on a common genomic island. Comparative analyses of these loci revealed extensive variability among the Geobacillus hemicellulose utilization systems, with only seven out of 41–68 proteins encoded on these loci conserved among the HUS+ strains. This translates into extensive differences in the hydrolytic enzymes, transport systems and metabolic pathways employed by Geobacillus spp. to degrade and utilize hemicellulose polymers.
Conclusions
The genetic variability among the Geobacillus HUS loci implies that they have variable capacities to degrade hemicellulose polymers, or that they may degrade distinct polymers, as are found in different plant species and tissues. The data from this study can serve as a basis for the genetic engineering of a Geobacillus strain(s) with an improved capacity to degrade and utilize hemicellulose.
【 授权许可】
2014 De Maayer et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150321095122469.pdf | 2084KB | download | |
Figure 4. | 84KB | Image | download |
Figure 3. | 111KB | Image | download |
Figure 2. | 112KB | Image | download |
Figure 1. | 45KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol 2010, 61:263-289.
- [2]Gibson LJ: The hierarchical structure and mechanics of plant materials. J R Soc Interface 2012, 9:2749-2766.
- [3]Ebringerova AZH, Heinze T: Hemicellulose. Adv Polymer Sci 2005, 185:1-67.
- [4]Ridley B, O'Neill M, Mohnen D: Pectins: structure, biosynthesis, and oligogalacturonide-relating signalling. Phytochemistry 2001, 57:929-967.
- [5]Shallom D, Shoham Y: Microbial hemicellulases. Curr Opin Microbiol 2003, 6:219-228.
- [6]Suurnäkki A, Tenkanen M, Buchert J, Viikari L: Hemicellulases in the bleaching of chemical pulps. Adv Biochem Eng Biotechnol 1997, 57:261-287.
- [7]Mathlouthi N, Lallès JP, Lepercq P, Juste C, Larbier M: Xylanase and beta-glucanase supplementation improve conjugated bile acid fraction in intestinal contents and increase villus size of small intestine wall in broiler chickens fed a rye-based diet. J Anim Sci 2002, 80:2773-2779.
- [8]Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA: Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 2009, 27:398-405.
- [9]Mielenz JR: Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 2001, 4:324-329.
- [10]Otieno DO, Ahring BK: The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 2012, 360:84-92.
- [11]Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T: Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 2009, 11:398-408.
- [12]Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Balyaev , Ivanov MV: Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 2001, 51:433-446.
- [13]Coorevits A, Dinsdale AE, Halket G, Lebbe L, De Vos P, Van Landschoot A, Logan NA: Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. Int J Syst Evol Microbiol 2012, 62:1470-1485.
- [14]de Champdore M, Staiano M, Rossi M, D'Auria S: Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 2007, 4:183-191.
- [15]Liu B, Zhang N, Zhao C, Lin B, Xie L, Huang Y: Characterization of a recombinant thermostable xylanase from hot spring thermophilic Geobacillus sp. TC-W7. J Microbiol Biotechnol 2012, 22:1388-1394.
- [16]Canakci S, Cevher Z, Inan K, Tokgoz M, Bahar F, Kacagan M, Sal FA, Belduz AO: Cloning, purification and characterization of an alkali-stable endoxylanase from thermophilic Geobacillus sp. 71. World J Microbiol Biotechnol 2012, 28:1981-1988.
- [17]Barker IJ, Petersen L, Reilly PJ: Mechanism of xylobiose hydrolysis by GH43 beta-xylosidase. J Phys Chem B 2010, 114:15389-15393.
- [18]Teplitsky A, Shulami S, Moryles S, Shoham Y, Shoham G: Crystallization and preliminary X-ray analysis of an intracellular xylanase from Bacillus stearothermophilus T-6. Acta Crystallogr D Biol Crystallogr 2000, 56:181-184.
- [19]Shulami S, Gat O, Sonenshein AL, Shoham Y: The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 1999, 181:3695-3704.
- [20]Shulami S, Zaide G, Zolotnitsky G, Langut Y, Feld G, Sonenshein AL, Shoham Y: A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl Environ Microbiol 2007, 73:874-884.
- [21]Shulami S, Raz-Pasteur A, Tabachnikov O, Gilead-Gropper S, Shner I, Shoham Y: The L-arabinan utilization system of Geobacillus stearothermophilus. J Bacteriol 2011, 193:2838-2850.
- [22]Hövel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, Shoham Y, Schomburg D: Crystal structure and snapshots along the reaction pathway of a family 51 alpha-L-arabinofuranosidase. EMBO J 2003, 22:4922-4932.
- [23]Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y: A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 2011, 286:41993-42001.
- [24]Boonmak C, Takahasi Y, Morikawa M: Draft genome sequence of Geobacillus thermoleovorans strain B23. Genome Announc 2013, 1:e0094413.
- [25]Muhd Sakaff MK, Abdul Rahman AY, Saito JA, Hou S, Alam M: Complete genome sequence of the thermophilic bacterium Geobacillus thermoleovorans CCB_US3_UF5. J Bacteriol 2012, 194:1239.
- [26]Takami H, Takaki Y, Chee GJ, Nishi S, Shimamura S, Suzuki H, Matsui S, Uchiyama I: Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 2004, 32:6292-6303.
- [27]De Maayer P, Williamson CE, Vennard CT, Danson MJ, Cowan DA: The draft genomes of Geobacillus sp. CAMR5420 and CAMR12739. Genome Announcin press
- [28]Doi K, Mori K, Martono H, Nagayoshi Y, Fujino Y, Tashiro K, Kuhara S, Ohshima T: Draft genome sequence of Geobacillus kaustophilus GBlys, a lysogenic strain with bacteriophage OH2. Genome Announc 2013, 1:e0063413.
- [29]Bhalla A, Kainth AS, Sani RK: Draft genome sequence of lignocellulose-degrading thermophilic bacterium Geobacillus sp. strain WSUCF1. Genome Announc 2013, 1:e0059513.
- [30]Wiegand S, Rabausch U, Chow J, Daniel R, Streit WR, Liesegang H: Complete genome sequence of Geobacillus sp. strain GHH01, a thermophilic lipase-secreting bacterium. Genome Announc 2013, 1:e0009213.
- [31]Shintani M, Ohtsubo Y, Fukuda K, Hosoyama A, Ohji S, Yamazoe A, Fujita N, Nagata Y, Tsuda M, Hatta T, Kimbara K: Complete genome sequence of the thermophilic polychlorinated biphenyl degrader Geobacillus sp. strain JF8 (NBRC 109937). Genome Announc 2014, 2:e0121313.
- [32]Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L: Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 2007, 104:5602-5607.
- [33]Yao N, Ren Y, Wang W: Genome sequence of a thermophilic Bacillus, Geobacillus thermodenitrificans DSM465. Genome Announc 2013, 1:e0104613.
- [34]Zhao Y, Caspers MP, Abee T, Siezen RJ, Kort R: Complete genome sequence of Geobacillus thermoglucosidans TNO-09.020, a thermophilic sporeformer associated with a dairy-processing environment. J Bacteriol 2012, 194:4118.
- [35]Zeigler DR: Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 2005, 55:1171-1179.
- [36]Langille MG, Brinkman FS: IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 2009, 25:664-665.
- [37]Lawrence JG, Ochman H: Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 1997, 44:383-397.
- [38]Solovyev V, Salamov A: Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its applications in agriculture, biomedicine and environmental studies. Edited by Li RW. New York: Nova Science Publishers; 2011; 2011:61-78.
- [39]Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26:1608-1615.
- [40]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
- [41]Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y: dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2011, 40:W445-451.
- [42]Henrissat B, Davies G: Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997, 7:637-644.
- [43]Khasin A, Alchanati I, Shoham Y: Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 1993, 59:1725-1730.
- [44]Baba T, Shinke R, Nanmori T: Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, beta-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl Environ Microbiol 1994, 60:2252-2258.
- [45]Gat O, Lapidot A, Alchanati I, Regueros C, Shoham Y: Cloning and DNA sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase. Appl Environ Microbiol 1994, 60:1889-1896.
- [46]Aspeborg H, Coutinho PM, Wang Y, Brumer H, Henrissat B: Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 2012, 12:186. BioMed Central Full Text
- [47]Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004, 382:769-781.
- [48]Michel G, Barbeyron T, Kloareg B, Czjzek M: The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity. Glycobiology 2009, 19:615-623.
- [49]Wang WY, Thomson JA: Nucleotide sequence of the celA gene encoding a cellodextrinase of Ruminococcus flavefaciens FD-1. Mol Gen Genet 1990, 222:265-269.
- [50]Saier MH: A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000, 64:354-411.
- [51]Schneider E: ABC transporters catalyzing carbohydrate uptake. Res Microbiol 2001, 152:303-310.
- [52]Sá-Nogueira I, Nogueira TV, Soares S, de Lencastre H: The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 1997, 143:957-969.
- [53]Ferreira MJ, Sa-Nogueira I: A multitask ATPase serving different ABC-type sugar importers in Bacillus subtilis. J Bacteriol 2010, 192:5312-5318.
- [54]Chow V, Nong G, Preston JF: Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J Bacteriol 2007, 189:8863-8870.
- [55]Teplitsky A, Shulami S, Moryles S, Zaide G, Shoham Y, Shoham G: Crystallization and preliminary X-ray analysis of alpha-D-glucuronidase from Bacillus stearothermophilus T-6. Acta Crystallogr D Biol Crystallogr 1999, 55:869-872.
- [56]Czjzek M, Ben David A, Bravman T, Shoham G, Henrissat B, Shoham Y: Enzyme-substrate complex structures of a GH39 beta-xylosidase from Geobacillus stearothermophilus. J Mol Biol 2005, 353:838-846.
- [57]Bravman T, Belakhov V, Solomon D, Shoham G, Henrissat B, Baasov T, Shoham Y: Identification of the catalytic residues in family 52 glycoside hydrolase, a beta-xylosidase from Geobacillus stearothermophilus T-6. J Biol Chem 2003, 278:26742-26749.
- [58]Bravman T, Zolotnitsky G, Belakhov V, Shoham G, Henrissat B, Baasov T, Shoham Y: Detailed kinetic analysis of a family 52 glycoside hydrolase: a beta-xylosidase from Geobacillus stearothermophilus. Biochemistry 2003, 42:10528-10536.
- [59]Brüx C, Ben-David A, Shallom-Shezifi D, Leon M, Niefind K, Shoham G, Shoham Y, Schomburg D: The structure of an inverting GH43 beta-xylosidase from Geobacillus stearothermophilus with its substrate reveals the role of the three catalytic residues. J Mol Biol 2006, 359:97-109.
- [60]Inácio JM, Correia IL, de Sa-Nogueira I: Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis. Microbiology 2008, 154:2719-2729.
- [61]Mohnen D: Pectin structure and biosynthesis. Curr Opin Plant Biol 2008, 11:266-277.
- [62]Lansky S, Salama R, Solomon VH, Belrhali H, Shoham Y, Shoham G: Crystallization and preliminary crystallographic analysis of Abp, a GH27 beta-L-arabinopyranosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F: Struct Biol Cryst Commun 2013, 69:695-699.
- [63]Alhassid A, Ben-David A, Tabachnikov O, Libster D, Naveh E, Zolotnitsky G, Shoham Y, Shoham G: Crystal structure of an inverting GH43 1,5-alpha-L-arabinanase from Geobacillus stearothermophilus complexed with its substrate. Biochem J 2009, 422:73-82.
- [64]Shi P, Chen X, Meng K, Huang H, Bai Y, Luo H, Yang P, Yao B: Distinct actions by Paenibacillus sp. strain E18 alpha-L-arabinofuranosidases and xylanase in xylan degradation. Appl Environ Microbiol 2013, 79:1990-1995.
- [65]Sjöström E: Wood chemistry, fundamentals and applications. London: Academic Press; 1993.
- [66]Biely P, Mastihubová M, Tenkanen M, Eyzaguirre J, Li XL, Vršanská M: Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of beta-D-xylopyranose and alpha-L-arabinofuranose. J Biotechnol 2011, 151:137-142.
- [67]Lansky S, Alalouf O, Solomon V, Alhassid A, Govada L, Chayan NE, Belrhali H, Shoham Y, Shoham G: Crystallization and preliminary crystallographic analysis of Axe2, an acetylxylan esterase from Geobacillus stearothermophilus. Acta Crystallogr Sect F: Struct Biol Cryst Commun 2013, 69:430-434.
- [68]Lombard V, Bernard T, Rancurel C, Brumer H, Coutinho PM, Henrissat B: A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 2010, 432:437-444.
- [69]Wilhelm M, Hollenberg CP: Nucleotide sequence of the Bacillus subtilis xylose isomerase gene: extensive homology between the Bacillus and Escherichia coli enzyme. Nucleic Acids Res 1985, 13:5717-5722.
- [70]Nankai H, Hashimoto W, Murata K: Molecular identification of family 38 alpha-mannosidase of Bacillus sp. strain GL1, responsible for complete depolymerization of xanthan. Appl Environ Microbiol 2002, 68:2731-2736.
- [71]Imanaka T, Ohta T, Sakoda H, Widhyastitui N, Matsuoka M: Cloning, nucleotide sequence, and efficient expression of the gene coding for thermostable aldehyde dehydrogenase from Bacillus stearothermophilus, and characterization of the enzyme. J Ferment Bioeng 1993, 76:161-167.
- [72]Ni Y, Li CX, Ma HM, Zhang J, Xu JH: Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity. Appl Microbiol Biotechnol 2011, 89:1111-1118.
- [73]Lei J, Zhou YF, Li LF, Su XD: Structural and biochemical analyses of YvgN and YtbE from Bacillus subtilis. Protein Sci 2009, 18:1792-1800.
- [74]Zeigler DR: The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology 2014, 160:1-11.
- [75]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Ser 1999, 41:95-98.
- [76]Marchler-Bauer A, Bryant SH: CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004, 32:W327-331.
- [77]Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH: CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013, 41:D348-352.
- [78]Saier MH Jr, Reddy VS, Tamang DG, Vastermark A: The transporter classification database. Nucleic Acids Res 2014, 42:D251-258.
- [79]Siever F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
- [80]Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9:299-306.
- [81]TreeBASE repository http://purl.org/phylo/treebase/phylows/study/TB2:S16328 webcite
- [82]LabArchive repository https://mynotebook.labarchives.com/share/BMC_Genomics_Geobacillus_hemicellulose_degradation_locus/MjkuOXw1MjM0OC8yMy9UcmVlTm9kZS82MTgzNzU0MDJ8NzUuOQ== webcite ( http://dx.doi.org/10.6070/H4MK69V3 webcite)