期刊论文详细信息
BMC Biotechnology
Expression and characterization of a GH43 endo-arabinanase from Thermotoga thermarum
Hao Shi1  Huaihai Ding1  Yingjuan Huang1  Liangliang Wang1  Yu Zhang1  Xun Li1  Fei Wang1 
[1] Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
关键词: Thermotoga thermarum;    Endo-arabinanase;    Arabinose;    Arabinan;   
Others  :  834865
DOI  :  10.1186/1472-6750-14-35
 received in 2013-10-08, accepted in 2014-04-24,  发布年份 2014
PDF
【 摘 要 】

Background

Arabinan is an important plant polysaccharide degraded mainly by two hydrolytic enzymes, endo-arabinanase and α-L-arabinofuranosidase. In this study, the characterization and application in arabinan degradation of an endo-arabinanase from Thermotoga thermarum were investigated.

Results

The recombinant endo-arabinanase was expressed in Escherichia coli BL21 (DE3) and purified by heat treatment followed by purification on a nickel affinity column chromatography. The purified endo-arabinanase exhibited optimal activity at pH 6.5 and 75°C and its residual activity retained more than 80% of its initial activity after being incubated at 80°C for 2 h. The results showed that the endo-arabinanase was very effective for arabinan degradation at higher temperature. When linear arabinan was used as the substrate, the apparent Km and Vmax values were determined to be 12.3 ± 0.15 mg ml−1 and 1,052.1 ± 12.7 μmol ml−1 min−1, respectively (at pH 6.5, 75°C), and the calculated kcat value was 349.3 ± 4.2 s−1.

Conclusions

This work provides a useful endo-arabinanase with high thermostability andcatalytic efficiency, and these characteristics exhibit a great potential for enzymatic conversion of arabinan.

【 授权许可】

   
2014 Shi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715093034755.pdf 2864KB PDF download
Figure 5. 35KB Image download
Figure 4. 59KB Image download
Figure 3. 78KB Image download
Figure 2. 152KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Squina FM, Santos CR, Ribeiro DA, Cota J, de Oliveira RR, Ruller R, Mort A, Murakami MT, Prade RA: Substrate cleavage pattern, biophysical characterization and low-resolution structure of a novel hyperthermostable arabinanase from Thermotoga petrophila. Biochem Biophys Res Commun 2010, 399:505-511.
  • [2]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
  • [3]Hong MR, Park CS, Oh DK: Characterization of a thermostable endo-1,5-α-l-arabinanase from Caldicellulorsiruptor saccharolyticus. Biotechnol Lett 2009, 31:1439-1443.
  • [4]Leal TF, Sá-Nogueira I: Purification, characterization and functional analysis of an endo-arabinanase (AbnA) from Bacillus subtilis. FEMS Microbiol Lett 2004, 241:41-48.
  • [5]Seo ES, Lim YR, Kim YS, Park CS, Oh DK: Characterization of a recombinant endo-1,5-α-l-arabinanase from the isolated bacterium Bacillus licheniformis. Biotechnol Bioprocess Eng 2010, 15:590-594.
  • [6]Sakamoto T, Ihara H, Kozaki S, Kawasaki H: A cold-adapted endo-arabinanase from Penicillium chrysogenum. Biochim Biophys Acta Gen Subj 2003, 1624:70-75.
  • [7]Sanchez S, Demain AL: Enzymes and Bioconversions of Industrial, Pharmaceutical, and Biotechnological Significance. Org Process Res Dev 2011, 15:224-230.
  • [8]Wong DWS, Chan VJ, Batt SB: Cloning and characterization of a novel exo-α-1,5-L-arabinanase gene and the enzyme. Appl Microbiol Biotechnol 2008, 79:941-949.
  • [9]Carapito R, Imberty A, Jeltsch JM, Byrns SC, Tam PH, Lowary TL, Varrot A, Phalip V: Molecular basis of arabinobio-hydrolase activity in phytopathogenic fungi crystal structure and catalytic mechanism of Fusarium graminearum GH93 exo-alpha-L-arabinanase. J Biol Chem 2009, 284:12285-12296.
  • [10]Kaji A, Saheki T: Endo-arabinanase from Bacillus subtilis F-11. Biochim Biophys Acta 1975, 410:354-360.
  • [11]de Sanctis D, Bento I, Inacio JM, Custodio S, de Sá-Nogueira I, Carrondo MA: Overproduction, crystallization and preliminary X-ray characterization of Abn2, an endo-1,5-alpha-arabinanase from Bacillus subtilis. Acta Crystallographica Section F-Structural Biology and Crystallization Communications 2008, 64:636-638.
  • [12]Dunkel MP, Amado R: Analysis of endo-(1–>5)-alpha-L-arabinanase degradation patterns of linear (1–>5)-alpha-L-arabino-oligosaccharides by high-performance anion-exchange chromatography with pulsed amperometric detection. Carbohydr Res 1995, 268:151-158.
  • [13]McKie VA, Black GW, Millward-Sadler SJ, Hazlewood GP, Laurie JI, Gilbert HJ: Arabinanase A from Pseudomonas fluorescens subsp cellulosa exhibits both an endo- and an exo- mode of action. Biochem J 1997, 323(Pt 2):547-555.
  • [14]Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ: Cellvibrio japonicus alpha-L-arabinanase 43A has a novel five-blade beta-propeller fold. Nat Struct Biol 2002, 9:665-668.
  • [15]Scott M, Pickersgill RW, Hazlewood GP, Gilbert HJ, Harris GW: Crystallization and preliminary X-ray analysis of arabinanase A from Pseudomonas fluorescens subspecies cellulosa. Acta crystallographica Section D, Biological crystallography 1999, 55:544-546.
  • [16]Skjot M, Kauppinen S, Kofod LV, Fuglsang C, Pauly M, Dalboge H, Andersen LN: Functional cloning of an endo-arabinanase from Aspergillus aculeatus and its heterologous expression in A. oryzae and tobacco. Mol Gen Genomics 2001, 265:913-921.
  • [17]Squina FM, Prade RA, Wang HL, Murakami MT: Expression, purification, crystallization and preliminary crystallographic analysis of an endo-1,5-alpha-L-arabinanase from hyperthermophilic Thermotoga petrophila. Acta Crystallographica Section F-Structural Biology and Crystallization Communications 2009, 65:902-905.
  • [18]Yamaguchi A, Tada T, Nakaniwa T, Kitatani T, Takao M, Sakai T, Nishimura K: Crystallization and preliminary X-ray diffraction analysis of a thermostable endo-1,5-alpha-L-arabinanase from Bacillus thermodenitrificans TS-3. Acta Crystallographica Section D-Biological Crystallography 2004, 60:1149-1151.
  • [19]Yamaguchi A, Tada T, Wada K, Nakaniwa T, Kitatani T, Sogabe Y, Takao M, Sakai T, Nishimura K: Structural basis for thermostability of endo-1,5-alpha-L-arabinanase from Bacillus thermodenitrificans TS-3. J Biochem 2005, 137:587-592.
  • [20]Inacio JM, de Sá-Nogueira I: Characterization of abn2 (yxiA), Encoding a Bacillus subtilis GH43 Arabinanase, Abn2, and Its Role in Arabino-Polysaccharide Degradation. J Bacteriol 2008, 190:4272-4280.
  • [21]de Sanctis D, Inacio JM, Lindley PF, de Sá-Nogueira I, Bento I: New evidence for the role of calcium in the glycosidase reaction of GH43 arabinanases. FEBS J 2010, 277:4562-4574.
  • [22]Pons T, Naumoff DG, Martinez-Fleites C, Hernandez L: Three acidic residues are at the active site of a beta-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins-Structure Function and Bioinformatics 2004, 54:424-432.
  • [23]Watanabe K, Kitamura K, Suzuki Y: Analysis of the critical sites for protein thermostabilization by proline substitution in oligo-1,6-glucosidase from Bacillus coagulans ATCC 7050 and the evolutionary consideration of proline residues. Appl Environ Microbiol 1996, 62:2066-2073.
  • [24]Mahuku GS: A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Mol Biol Report 2004, 22:71-81.
  • [25]Lammirato C, Miltner A, Kaestner M: Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger. Soil Biol Biochem 2011, 43:1936-1942.
  • [26]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [27]Zhang Y, Raudah S, Teo H, Teo GWS, Fan R, Sun X, Orner BP: Alanine-shaving mutagenesis to determine key interfacial residues governing the assembly of a nano-cage maxi-ferritin. J Biol Chem 2010, 285:12078-12086.
  • [28]Miller GL: Use of dinitrosalicylic acid reagent for determination of ruducing sugar. Anal Chem 1959, 31:426-428.
  • [29]Okuyama M, Okuno A, Shimizu N, Mori H, Kimura A, Chiba S: Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of alpha-glucosidase from Schizosaccharomyces pombe. Eur J Biochem 2001, 268:2270-2280.
  • [30]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23:2947-2948.
  • [31]Wilgenbusch JC, Swofford D: Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatics 2003. Chaper 6, unit 6.4. http://www.currentprotocols.com/protocol/bi0604 webcite
  • [32]Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003, 31:3381-3385.
  • [33]Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 1997, 18:2714-2723.
  • [34]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22:195-201.
  文献评价指标  
  下载次数:6次 浏览次数:3次