期刊论文详细信息
Biotechnology for Biofuels
Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum
Hao Shi1  Xun Li1  Huaxiang Gu1  Yu Zhang1  Yingjuan Huang1  Liangliang Wang1  Fei Wang1 
[1] Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing, 210037, China
关键词: Xylooligosaccharides;    Thermostability;    Hemicellulose;    Xylose tolerant;    α-arabinosidase;    β-xylosidase;    Thermotoga thermarum;   
Others  :  798144
DOI  :  10.1186/1754-6834-6-27
 received in 2012-11-29, accepted in 2013-02-08,  发布年份 2013
PDF
【 摘 要 】

Background

β-Xylosidase is an important constituent of the hemicellulase system and it plays an important role in hydrolyzing xylooligosaccharides to xylose. Xylose, a useful monose, has been utilized in a wide range of applications such as food, light, chemical as well as energy industry. Therefore, the xylose-tolerant β-xylosidase with high specific activity for bioconversion of xylooligosaccharides has a great potential in the fields as above.

Results

A β-xylosidase gene (Tth xynB3) of 2,322 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 774 amino acid residues, and was expressed in Escherichia coli BL21 (DE3). The phylogenetic trees of β-xylosidases were constructed using Neighbor-Joining (NJ) and Maximum-Parsimony (MP) methods. The phylogeny and amino acid analysis indicated that the Tth xynB3 β-xylosidase was a novel β-xylosidase of GH3. The optimal activity of the Tth xynB3 β-xylosidase was obtained at pH 6.0 and 95°C and was stable over a pH range of 5.0-7.5 and exhibited 2 h half-life at 85°C. The kinetic parameters Km and Vmax values for p-nitrophenyl-β-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside were 0.27 mM and 223.3 U/mg, 0.21 mM and 75 U/mg, respectively. The kcat/Km values for p-nitrophenyl-β-D-xylopyranoside and p-nitrophenyl-α-L-arabinofuranoside were 1,173.4 mM-1 s-1 and 505.9 mM-1 s-1, respectively. It displayed high tolerance to xylose, with Ki value approximately 1000 mM. It was stimulated by xylose at higher concentration up to 500 mM, above which the enzyme activity of Tth xynB3 β-xylosidase was gradually decreased. However, it still remained approximately 50% of its original activity even if the concentration of xylose was as high as 1000 mM. It was also discovered that the Tth xynB3 β-xylosidase exhibited a high hydrolytic activity on xylooligosaccharides. When 5% substrate was incubated with 0.3 U Tth xynB3 β-xylosidase in 200 μL reaction system for 3 h, almost all the substrate was biodegraded into xylose.

Conclusions

The article provides a useful and novel β-xylosidase displaying extraordinary and desirable properties: high xylose tolerance and catalytic activity at temperatures above 75°C, thermally stable and excellent hydrolytic activity on xylooligosaccharides.

【 授权许可】

   
2013 Shi et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706102526274.pdf 1650KB PDF download
Figure 5. 125KB Image download
Figure 4. 55KB Image download
Figure 3. 42KB Image download
Figure 2. 36KB Image download
Figure 1. 192KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Quintero D, Velasco Z, Hurtado-Gómez E, Neira JL, Contreras LM: Isolation and characterization of a thermostable β-xylosidase in the thermophilic bacterium Geobacillus pallidus. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 2007, 1774(4):510-518.
  • [2]Kambourova M, Mandeva R, Fiume I, Maurelli L, Rossi M, Morana A: Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. J Appl Microbiol 2007, 102(6):1586-1593.
  • [3]Morana A, Paris O, Maurelli L, Rossi M, Cannio R: Gene cloning and expression in Escherichia coli of a bi-functional β-D-xylosidase/α-L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 2006, 11(1):123-132.
  • [4]Kiss T, Erdei A, Kiss L: Investigation of the active site of the extracellular β-xylosidase from Aspergillus carbonarius. Arch Biochem Biophys 2002, 399(2):188-194.
  • [5]Bokhari SAI, Latif F, Akhtar MW, Rajoka MI: Characterization of a β-xylosidase produced by a mutant derivative of Humicola lanuginosa in solid state fermentation. Annals of Microbiology 2010, 60(1):21-29.
  • [6]Ohta K, Fujimoto H, Fujii S, Wakiyama M: Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. J Biosci Bioeng 2010, 110(2):152-157.
  • [7]Rémond C, Aubry N, Crônier D, Noël S, Martel F, Roge B, Rakotoarivonina H, Debeire P, Chabbert B: Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour Technol 2010, 101(17):6712-6717.
  • [8]Ohgren K, Bura R, Saddler J, Zacchi G: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 2007, 98(13):2503-2510.
  • [9]Zhang J, Siika-aho M, Puranen T, Tang M, Tenkanen M, Viikari L: Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw. Biotechnol Biofuels 2011, 4(1):12. BioMed Central Full Text
  • [10]Katapodis P, Nerinckx W, Claeyssens M, Christakopoulos P: Purification and characterization of a thermostable intracellular β-xylosidase from the thermophilic fungus Sporotrichum thermophile. Process Biochem 2006, 41(12):2402-2409.
  • [11]Pedersen M, Lauritzen HK, Frisvad JC, Meyer AS: Identification of thermostable β-xylosidase activities produced by Aspergillus brasiliensis and Aspergillus niger. Biotechnol Lett 2007, 29(5):743-748.
  • [12]Ben-David A, Bravman T, Balazs YS, Czjzek M, Schomburg D, Shoham G, Shoham Y: Glycosynthase activity of Geobacillus stearothermophilus GH52 β-xylosidase: Efficient synthesis of xylooligosaccharides from α-D-xylopyranosyl fluoride through a conjugated reaction. Chembiochem 2007, 8(17):2145-2151.
  • [13]Guerfali M, Maalej I, Gargouri A, Belghith H: Catalytic properties of the immobilized Talaromyces thermophilus β-xylosidase and its use for xylose and xylooligosaccharides production. J Mol Catal B: Enzym 2009, 57(1–4):242-249.
  • [14]Barker IJ, Petersen L, Reilly PJ: Mechanism of xylobiose hydrolysis by GH43 β-xylosidase. J Phys Chem B 2010, 114(46):15389-15393.
  • [15]Eneyskaya EV, Ivanen DR, Bobrov KS, Isaeva-Ivanova LS, Shabalin KA, Savel’ev AN, Golubev AM, Kulminskaya AA: Biochemical and kinetic analysis of the GH3 family β-xylosidase from Aspergillus awamori X-100. Arch Biochem Biophys 2007, 457(2):225-234.
  • [16]Minic Z: Purification and characterization of enzymes exhibiting β-D-xylosidase activities in stem tissues of arabidopsis. Plant Physiol 2004, 135(2):867-878.
  • [17]Shao W, Xue Y, Wu A, Kataeva I, Pei J, Wu H, Wiegel J: Characterization of a novel β-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 2010, 77(3):719-726.
  • [18]Bravman T: Identification of the catalytic residues in family 52 glycoside hydrolase, a β-xylosidase from Geobacillus stearothermophilus T-6*. J Biol Chem 2003, 278(29):26742-26749.
  • [19]Windberger E, Huber R, Trincone A, Fricke H, Stetter KO: Thermotoga thermarum sp.nov and Thermotoga neapolitana ocurring in African continental solfataric springs. Arch Microbiol 1989, 151(6):506-512.
  • [20]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, et al.: CDD: a Conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2010, 39(Database):D225-D229.
  • [21]Zanoelo F, Polizeli M, Terenzi H, Jorge J: Purification and biochemical properties of a thermostable xylose-tolerant β-D-xylosidase from Scytalidium thermophilum. J Ind Microbiol Biotechnol 2004, 31:170-176.
  • [22]Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT: A xylose-tolerant β-xylosidase from Paecilomyces thermophila: Characterization and its co-action with the endogenous xylanase. Bioresour Technol 2008, 99(13):5402-5410.
  • [23]Xue YM, Shao WL: Expression and characterization of a thermostable β-xylosidase from the hyperthermophile, Thermotoga maritima. Biotechnol Lett 2004, 26(19):1511-1515.
  • [24]Zhou J, Bao L, Chang L, Liu Z, You C, Lu H: Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 2012, 54(2):79-87.
  • [25]Song L, Siguier B, Dumon C, Bozonnet S, O'Donohue MJ: Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy. Biotechnol Biofuels 2012, 5(1):3. BioMed Central Full Text
  • [26]Zhou J, Bao L, Chang L, Zhou Y, Lu H: Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol 2011, 39(1):143-152.
  • [27]Smaali I, Rémond C, O’Donohue MJ: Expression in Escherichia coli and characterization of β-xylosidases GH39 and GH-43 from Bacillus halodurans C-125. Appl Microbiol Biotechnol 2006, 73(3):582-590.
  • [28]Ghosh M, Das A, Mishra AK, Nanda G: Aspergillus sydowii MG-49 is a strong producer of thermostable xylanolytic enzymes. Enzyme Microb Technol 1993, 15(8):703-709.
  • [29]Hebraud M, Fevre M: Purification and charaterization of an glycoside hydrolase from the anaerobic ruminal fungus Neocallimastix frontalis. Appl Environ Microbiol 1990, 56(10):3164-3169.
  • [30]Pei JJ, Pang Q, Zhao LG, Fan S, Shi H: Thermoanaerobacterium thermosaccharolyticum β-glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnol Biofuels 2012., 5
  • [31]Han Y, Chen H: A β−xylosidase from cell wall of maize: Purification, properties and its use in hydrolysis of plant cell wall. J Mol Catal B: Enzym 2010, 63(3–4):135-140.
  • [32]Xiong JS, Balland-Vanney M, Xie ZP, Schultze M, Kondorosi A, Kondorosi E, Staehelin C: Molecular cloning of a bifunctional β-xylosidase/α-L-arabinosidase from alfalfa roots: heterologous expression in Medicago truncatula and substrate specificity of the purified enzyme. J Exp Bot 2007, 58(11):2799-2810.
  • [33]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227(5259):680-685.
  • [34]Zhang Y, Raudah S, Teo H, Teo GWS, Fan R, Sun X, Orner BP: Alanine-shaving mutagenesis to determine key interfacial residues governing the assembly of a nano-cage maxi-ferritin. J Biol Chem 2010, 285(16):12078-12086.
  • [35]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
  • [36]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-2739.
  • [37]Wilgenbusch JC, Swofford D: Inferring evolutionary trees with PAUP*. Current protocols in bioinformatics / editoral board, Andreas D Baxevanis [et al.] 2003. Chaper 6, unit 6.4. http://www.currentprotocols.com/protocol/bi0604 webcite
  • [38]Okuyama M, Okuno A, Shimizu N, Mori H, Kimura A, Chiba S: Carboxyl group of residue Asp647 as possible proton donor in catalytic reaction of alpha-glucosidase from Schizosaccharomyces pombe. Eur J Biochem 2001, 268(8):2270-2280.
  文献评价指标  
  下载次数:62次 浏览次数:39次