期刊论文详细信息
BMC Nephrology
Mitochondrial impairment in the five-sixth nephrectomy model of chronic renal failure: proteomic approach
Deepak Malhotra1  Joseph I Shapiro1  Georgy Budnyy1  Steven T Haller1  David J Kennedy1  Anita Tamirisa1  Larisa V Fedorova1 
[1]Department of Medicine, University of Toledo School of Medicine, Toledo, OH 43614, USA
关键词: Chronic kidney failure;    BNIP3;    Autophagy;    Mitochondria;    5/6 nephrectomy;   
Others  :  1082830
DOI  :  10.1186/1471-2369-14-209
 received in 2013-05-06, accepted in 2013-10-01,  发布年份 2013
PDF
【 摘 要 】

Background

Kidney injuries provoke considerable adjustment of renal physiology, metabolism, and architecture to nephron loss. Despite remarkable regenerative capacity of the renal tissue, these adaptations often lead to tubular atrophy, interstial and glomerular scaring, and development of chronic kidney disease. The therapeutic strategies for prevention of the transition from acute kidney damage to a chronic condition are limited. The purpose of this study was to elucidate large-scale alterations of the renal cortex proteome in partially nephrecromized rats at an early stage of chronic kidney disease.

Methods

Sprague–Dawley 5/6 nephrectomized rats and sham-operated controls were sacrificed at day 28 post-surgery. To identify proteins with notable alteration of expression we applied a 2D-proteomics approach followed by mass-spectrometry. Altered expression of identified and related proteins was validated by Western blotting and immunohistochemistry.

Results

Proteins with increased levels of expression after partial nephrectomy were albumin and vimentin. Proteins with decreased expression were metabolic or mitochondrial. Western blotting analysis showed that the renal cortex of nephrectomized rats expressed decreased amount (by ~50%) of proteins from the inner mitochondrial compartment - the beta-oxidation enzyme MCAD, the structural protein GRP-75, and the oxidative phosphorylation protein COXIV. Mitochondrial DNA copy number was decreased by 30% in the cortex of PNx rats. In contrast, the levels of an outer mitochondrial membrane protein, VDAC1, remained unchanged in remnant kidneys. Mitochondrial biogenesis was not altered after renal mass ablation as was indicated by unchanged levels of PPARγ and PGC1α proteins. Autophagy related protein Beclin 1 was up-regulated in remnant kidneys, however the level of LC3-II protein was unchanged. BNIP3 protein, which can initiate both mitochondrial autophagy and cell death, was up-regulated considerably in kidneys of nephrecomized rats.

Conclusions

The results of the study demonstrated that notable alterations in the renal cortex of 5/6 nephrectomized rats were associated with mitochondrial damage, however mitochondrial biogenesis and autophagy for replacement of damaged mitochondria were not stimulated. Accumulation of dysfunctional mitochondria after 5/6 nephrectomy may cause multiple adjustments in biosynthetic pathways, energy production, ROS signaling, and activation of pro-cell death regulatory pathways thus contributing to the development of chronic kidney disease.

【 授权许可】

   
2013 Fedorova et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141224183525141.pdf 1591KB PDF download
Figure 4. 54KB Image download
Figure 3. 151KB Image download
Figure 2. 51KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Zhang QL, Rothenbacher D: Prevalence of chronic kidney disease in population-based studies: systematic review. BMC Public Health 2008, 8:117.
  • [2]Sharfuddin AA, Molitoris BA: Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 2011, 7(4):189-200.
  • [3]Wesson LG: Compensatory growth and other growth responses of the kidney. Nephron 1989, 51(2):149-184.
  • [4]Kennedy DJ, Vetteth S, Periyasamy SM, Kanj M, Fedorova L, Khouri S, Kahaleh MB, Xie Z, Malhotra D, Kolodkin NI, et al.: Central role for the cardiotonic steroid marinobufagenin in the pathogenesis of experimental uremic cardiomyopathy. Hypertension 2006, 47(3):488-495.
  • [5]Haller ST, Kennedy DJ, Shidyak A, Budny GV, Malhotra D, Fedorova OV, Shapiro JI, Bagrov AY: Monoclonal antibody against marinobufagenin reverses cardiac fibrosis in rats with chronic renal failure. Am J Hypertens 2012, 25(6):690-696.
  • [6]Fedorova LV, Raju V, El-Okdi N, Shidyak A, Kennedy DJ, Vetteth S, Giovannucci DR, Bagrov AY, Fedorova OV, Shapiro JI, et al.: The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol 2009, 296(4):F922-F934.
  • [7]Willey JC, Crawford EL, Knight CR, Warner KA, Motten CA, Herness EA, Zahorchak RJ, Graves TG: Standardized RT-PCR and the standardized expression measurement center. Methods Mol Biol 2004, 258:13-41.
  • [8]Muchaneta-Kubara EC, el Nahas AM: Myofibroblast phenotypes expression in experimental renal scarring. Nephrol Dial Transplant 1997, 12(5):904-915.
  • [9]Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G: In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 1998, 9(7):1213-1224.
  • [10]Moradi H, Kwok V, Vaziri ND: Effect of chronic renal failure on arginase and argininosuccinate synthetase expression. Am J Nephrol 2006, 26(3):310-318.
  • [11]Chen GF, Baylis C: In vivo renal arginine release is impaired throughout development of chronic kidney disease. Am J Physiol Renal Physiol 2009, 298(1):F95-F102.
  • [12]Scarpulla RC: Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006, 97(4):673-683.
  • [13]Semenza GL: Mitochondrial autophagy: life and breath of the cell. Autophagy 2008, 4(4):534-536.
  • [14]Wang K, Klionsky DJ: Mitochondria removal by autophagy. Autophagy 2011, 7(3):297-300.
  • [15]Sinha S, Levine B: The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 2008, 27(Suppl 1):S137-S148.
  • [16]Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008, 283(16):10892-10903.
  • [17]Zhang J, Ney PA: Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 2009, 16(7):939-946.
  • [18]Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN, Gustafsson AB: Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 2011, 18(4):721-731.
  • [19]Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al.: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010, 90(4):1383-1435.
  • [20]Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171(4):603-614.
  • [21]Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 2010, 6(5):614-621.
  • [22]Tanida I: Autophagosome formation and molecular mechanism of autophagy. Antioxidants & redox signaling 2011, 14(11):2201-2214.
  • [23]Fine L: The biology of renal hypertrophy. Kidney international 1986, 29(3):619-634.
  • [24]Miskell CA, Simpson DP: Hyperplasia precedes increased glomerular filtration rate in rat remnant kidney. Kidney international 1990, 37(2):758-766.
  • [25]Kliem V, Johnson RJ, Alpers CE, Yoshimura A, Couser WG, Koch KM, Floege J: Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney international 1996, 49(3):666-678.
  • [26]Faraj AH, Morley AR: Remnant kidney pathology after five-sixth nephrectomy in rat. I. A biochemical and morphological study. APMIS 1992, 100(12):1097-1105.
  • [27]Shapiro JI, Elkins N, Reiss OK, Suleymanlar G, Jin H, Schrier RW, Chan L: Energy metabolism following reduction of renal mass. Kidney Int Suppl 1994, 45:S100-S105.
  • [28]Shapiro JI, Harris DC, Schrier RW, Chan L: Attenuation of hypermetabolism in the remnant kidney by dietary phosphate restriction in the rat. Am J Physiol 1990, 258(1 Pt 2):F183-F188.
  • [29]Nath KA, Croatt AJ, Hostetter TH: Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol 1990, 258(5 Pt 2):F1354-F1362.
  • [30]Harris DC, Chan L, Schrier RW: Remnant kidney hypermetabolism and progression of chronic renal failure. Am J Physiol 1988, 254(2 Pt 2):F267-F276.
  • [31]Pfaller W, Rittinger M: Quantitative morphology of the rat kidney. Int J Biochem 1980, 12(1–2):17-22.
  • [32]Bagnasco S, Good D, Balaban R, Burg M: Lactate production in isolated segments of the rat nephron. Am J Physiol 1985, 248(4 Pt 2):F522-F526.
  • [33]Johnson HA, Amendola F: Mitochondrial proliferation in compensatory growth of the kidney. Am J Pathol 1969, 54(1):35-45.
  • [34]Hwang S, Bohman R, Navas P, Norman JT, Bradley T, Fine LG: Hypertrophy of renal mitochondria. J Am Soc Nephrol 1990, 1(5):822-827.
  • [35]Deocaris CC, Kaul SC, Wadhwa R: The versatile stress protein mortalin as a chaperone therapeutic agent. Protein Pept Lett 2009, 16(5):517-529.
  • [36]Ran Q, Wadhwa R, Kawai R, Kaul SC, Sifers RN, Bick RJ, Smith JR, Pereira-Smith OM: Extramitochondrial localization of mortalin/mthsp70/PBP74/GRP75. Biochem Biophys Res Commun 2000, 275(1):174-179.
  • [37]Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ: Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. J Am Soc Nephrol 2001, 12(7):1448-1457.
  • [38]Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, Nangaku M: Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 2004, 15(5):1277-1288.
  • [39]Yu X, Fang Y, Ding X, Liu H, Zhu J, Zou J, Xu X, Zhong Y: Transient hypoxia-inducible factor activation in rat renal ablation and reduced fibrosis with L-mimosine. Nephrology (Carlton) 2012, 17(1):58-67.
  • [40]Nangaku M: Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 2006, 17(1):17-25.
  • [41]Hall AM, Unwin RJ, Parker N, Duchen MR: Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol 2009, 20(6):1293-1302.
  • [42]Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, Zhao Z, Ganger M, Tow CY, Seshan SV: Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol 2011, 22(6):1041-1052.
  • [43]Fedorova LV, Sodhi K, Gatto-Weis C, Puri N, Hinds TD Jr, Shapiro JI, Malhotra D: Peroxisome proliferator-activated receptor delta agonist, HPP593, prevents renal necrosis under chronic ischemia. PloS one 2013, 8(5):e64436.
  • [44]Mizushima N, Yoshimori T: How to interpret LC3 immunoblotting. Autophagy 2007, 3(6):542-545.
  • [45]Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, et al.: Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012, 8(4):445-544.
  • [46]Moscat J, Diaz-Meco MT: Feedback on fat: p62-mTORC1-autophagy connections. Cell 2011, 147(4):724-727.
  • [47]Nezis IP, Stenmark H: p62 at the Interface of Autophagy, Oxidative Stress Signaling, and Cancer. Antioxidants & redox signaling 2012, 17(5):786-793.
  • [48]Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al.: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 2011, 22(5):902-913.
  • [49]Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB: Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 2012, 8(5):826-837.
  • [50]Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D: Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 2010, 120(4):1043-1055.
  • [51]Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X: Age-related changes in the function of autophagy in rat kidneys. Age (Dordr) 2012, 34(2):329-339.
  • [52]Cui J, Shi S, Sun X, Cai G, Cui S, Hong Q, Chen X, Bai XY: Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys. PloS one 2013, 8(7):e69720.
  • [53]Herzog C, Yang C, Holmes A, Kaushal GP: zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins but impairs autophagic flux and worsens renal function. Am J Physiol Renal Physiol 2012, 303(8):F1239-F1250.
  • [54]Sansanwal P, Yen B, Gahl WA, Ma Y, Ying L, Wong LJ, Sarwal MM: Mitochondrial autophagy promotes cellular injury in nephropathic cystinosis. J Am Soc Nephrol 2010, 21(2):272-283.
  • [55]Gordy C, He YW: The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 2012, 3(1):17-27.
  • [56]Ciechomska IA, Goemans CG, Tolkovsky AM: Why doesn’t Beclin 1, a BH3-only protein, suppress the anti-apoptotic function of Bcl-2? Autophagy 2009, 5(6):880-881.
  • [57]Bruick RK: Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000, 97(16):9082-9087.
  • [58]Sowter HM, Ratcliffe PJ, Watson P, Greenberg AH, Harris AL: HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res 2001, 61(18):6669-6673.
  • [59]Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB: Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007, 14(1):146-157.
  • [60]Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson AB: Microtubule-associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. J Biol Chem 2012, 287(23):19094-19104.
  • [61]Gustafsson AB: Bnip3 as a dual regulator of mitochondrial turnover and cell death in the myocardium. Pediatr Cardiol 2011, 32(3):267-274.
  • [62]Quinsay MN, Lee Y, Rikka S, Sayen MR, Molkentin JD, Gottlieb RA, Gustafsson AB: Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. J Mol Cell Cardiol 2010, 48(6):1146-1156.
  • [63]Thomas GL, Yang B, Wagner BE, Savill J, El Nahas AM: Cellular apoptosis and proliferation in experimental renal fibrosis. Nephrol Dial Transplant 1998, 13(9):2216-2226.
  • [64]Miyamoto Y, Kitamura N, Nakamura Y, Futamura M, Miyamoto T, Yoshida M, Ono M, Ichinose S, Arakawa H: Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PloS one 2011, 6(1):e16054.
  • [65]Nakamura Y, Kitamura N, Shinogi D, Yoshida M, Goda O, Murai R, Kamino H, Arakawa H: BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PloS one 2012, 7(1):e30767.
  • [66]Regula KM, Ens K, Kirshenbaum LA: Inducible expression of BNIP3 provokes mitochondrial defects and hypoxia-mediated cell death of ventricular myocytes. Circ Res 2002, 91(3):226-231.
  • [67]Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li H, Kirshenbaum LA, Hahn HS, Robbins J, et al.: Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007, 117(10):2825-2833.
  • [68]Mazure NM, Pouyssegur J: Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 2009, 5(6):868-869.
  • [69]Semenza GL: HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010, 20(1):51-56.
  文献评价指标  
  下载次数:9次 浏览次数:7次