期刊论文详细信息
BMC Evolutionary Biology
Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns
John P Quinn1  Gerome Breen2  Vivien J Bubb1  Abigail L Savage1 
[1]Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK
[2]National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King’s College London SE5 8DF, UK
关键词: Retrotransposon;    G-quadruplex DNA;    Genetic variation;    DJ-1;    PARK7;    SVA;   
Others  :  1087344
DOI  :  10.1186/1471-2148-13-101
 received in 2013-02-25, accepted in 2013-05-15,  发布年份 2013
PDF
【 摘 要 】

Background

Retrotransposons are a major component of the human genome constituting as much as 45%. The hominid specific SINE-VNTR-Alus are the youngest of these elements constituting 0.13% of the genome; they are therefore a practical and amenable group for analysis of both their global integration, polymorphic variation and their potential contribution to modulation of genome regulation.

Results

Consistent with insertion into active chromatin we have determined that SVAs are more prevalent in genic regions compared to gene deserts. The consequence of which, is that their integration has greater potential to have affects on gene regulation. The sequences of SVAs show potential for the formation of secondary structure including G-quadruplex DNA. We have shown that the human specific SVA subtypes (E-F1) show the greatest potential for forming G-quadruplexes within the central tandem repeat component in addition to the 5’ ‘CCCTCT’ hexamer. We undertook a detailed analysis of the PARK7 SVA D, located in the promoter of the PARK7 gene (also termed DJ-1), in a HapMap cohort where we identified 2 variable number tandem repeat domains and 1 tandem repeat within this SVA with the 5’ CCCTCT element being one of the variable regions. Functionally we were able to demonstrate that this SVA contains multiple regulatory elements that support reporter gene expression in vitro and further show these elements exhibit orientation dependency.

Conclusions

Our data supports the hypothesis that SVAs integrate preferentially in to open chromatin where they could modify the existing transcriptional regulatory domains or alter expression patterns by a variety of mechanisms.

【 授权许可】

   
2013 Savage et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150116025253834.pdf 451KB PDF download
Figure 4. 40KB Image download
Figure 3. 136KB Image download
Figure 2. 58KB Image download
Figure 1. 50KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Ono M, Kawakami M, Takezawa T: A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res 1987, 15:8725-8737.
  • [2]Zhu ZB, Hsieh SL, Bentley DR, Campbell RD, Volanakis JE: A variable number of tandem repeats locus within the human complement C2 gene is associated with a retroposon derived from a human endogenous retrovirus. J Exp Med 1992, 175:1783-1787.
  • [3]Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, Dangel AW, Carroll MC, Zipf WB, Yu CY: Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J Biol Chem 1994, 269:8466-8476.
  • [4]Han K, Konkel MK, Xing J, Wang H, Lee J, Meyer TJ, Huang CT, Sandifer E, Hebert K, Barnes EW: Mobile DNA in Old world monkeys: a glimpse through the rhesus macaque genome. Science 2007, 316:238-240.
  • [5]Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA: SVA elements: a hominid-specific retroposon family. J Mol Biol 2005, 354:994-1007.
  • [6]Bantysh OB, Buzdin AA: Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA. Biochemistry (Mosc) 2009, 74:1393-1399.
  • [7]Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH Jr: Exon-trapping mediated by the human retrotransposon SVA. Genome Res 2009, 19:1983-1991.
  • [8]Damert A, Raiz J, Horn AV, Lower J, Wang H, Xing J, Batzer MA, Lower R, Schumann GG: 5’-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 2009, 19:1992-2008.
  • [9]Zabolotneva AA, Bantysh O, Suntsova MV, Efimova N, Malakhova GV, Schumann GG, Gayfullin NM, Buzdin AA: Transcriptional regulation of human-specific SVAF(1) retrotransposons by cis-regulatory MAST2 sequences. Gene 2012, 505:128-136.
  • [10]Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH Jr: Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 2011, 20:3386-3400.
  • [11]Raiz J, Damert A, Chira S, Held U, Klawitter S, Hamdorf M, Lower J, Stratling WH, Lower R, Schumann GG: The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res 2012, 40:1666-1683.
  • [12]Xing J, Zhang Y, Han K, Salem AH, Sen SK, Huff CD, Zhou Q, Kirkness EF, Levy S, Batzer MA, Jorde LB: Mobile elements create structural variation: analysis of a complete human genome. Genome Res 2009, 19:1516-1526.
  • [13]Hancks DC, Mandal PK, Cheung LE, Kazazian HH Jr: The minimal active human SVA retrotransposon requires only the 5’-hexamer and Alu-like domains. Mol Cell Biol 2012, 32:4718-4726.
  • [14]Hancks DC, Kazazian HH Jr: Active human retrotransposons: variation and disease. Curr Opin Genet Dev 2012, 22:191-203.
  • [15]van der Klift HM, Tops CM, Hes FJ, Devilee P, Wijnen JT: Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome. Hum Mutat 2012, 33:1051-1055.
  • [16]Watanabe M, Kobayashi K, Jin F, Park KS, Yamada T, Tokunaga K, Toda T: Founder SVA retrotransposal insertion in Fukuyama-type congenital muscular dystrophy and its origin in Japanese and Northeast Asian populations. Am J Med Genet A 2005, 138:344-348.
  • [17]Takasu M, Hayashi R, Maruya E, Ota M, Imura K, Kougo K, Kobayashi C, Saji H, Ishikawa Y, Asai T, Tokunaga K: Deletion of entire HLA-A gene accompanied by an insertion of a retrotransposon. Tissue Antigens 2007, 70:144-150.
  • [18]Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M: Somatic retrotransposition alters the genetic landscape of the human brain. Nature 2011, 479:534-537.
  • [19]Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, Sasaki C, Costa J, Lizardi PM: Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 2009, 448:151-167.
  • [20]Hancks DC, Kazazian HH Jr: SVA retrotransposons: Evolution and genetic instability. Semin Cancer Biol 2010, 20:234-245.
  • [21]Nakagama H, Higuchi K, Tanaka E, Tsuchiya N, Nakashima K, Katahira M, Fukuda H: Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures. Mutat Res 2006, 598:120-131.
  • [22]de Messieres M, Chang JC, Brawn-Cinani B, La Porta A: Single-molecule study of g-quadruplex disruption using dynamic force spectroscopy. Phys Rev Lett 2012, 109:058101.
  • [23]Membrino A, Cogoi S, Pedersen EB, Xodo LE: G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One 2011, 6:e24421.
  • [24]Clark DW, Phang T, Edwards MG, Geraci MW, Gillespie MN: Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription. Free Radic Biol Med 2012, 53:51-59.
  • [25]De S, Michor F: DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 2011, 18:950-955.
  • [26]Huppert JL, Balasubramanian S: Prevalence of quadruplexes in the human genome. Nucleic Acids Res 2005, 33:2908-2916.
  • [27]Fletcher TM, Sun D, Salazar M, Hurley LH: Effect of DNA secondary structure on human telomerase activity. Biochemistry 1998, 37:5536-5541.
  • [28]Vasiliou SA, Ali FR, Haddley K, Cardoso MC, Bubb VJ, Quinn JP: The SLC6A4 VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine in vitro. Addict Biol 2012, 17:156-170.
  • [29]Haddley K, Bubb VJ, Breen G, Parades-Esquivel UM, Quinn JP: Behavioural Genetics of the Serotonin Transporter. Curr Top Behav Neurosci 2012.
  • [30]Brotons O, O’Daly OG, Guindalini C, Howard M, Bubb J, Barker G, Dalton J, Quinn J, Murray RM, Breen G, Shergill SS: Modulation of orbitofrontal response to amphetamine by a functional variant of DAT1 and in vitro confirmation. Mol Psychiatry 2011, 16:124-126.
  • [31]Ali FR, Vasiliou SA, Haddley K, Paredes UM, Roberts JC, Miyajima F, Klenova E, Bubb VJ, Quinn JP: Combinatorial interaction between two human serotonin transporter gene variable number tandem repeats and their regulation by CTCF. J Neurochem 2010, 112:296-306.
  • [32]Breen G, Collier D, Craig I, Quinn J: Variable number tandem repeats as agents of functional regulation in the genome. IEEE Eng Med Biol Mag 2008, 27:103-104. 108
  • [33]Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, Klenova E, Quinn JP: Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. J Neurosci 2007, 27:2793-2801.
  • [34]Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, Ammar N, Craig I, O’Gara C, Bubb VJ, Greenwood T: A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci USA 2006, 103:4552-4557.
  • [35]MacKenzie A, Quinn J: A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer- like properties in the mouse embryo. Proc Natl Acad Sci USA 1999, 96:15251-15255.
  • [36]Schwarzenbach H, Goekkurt E, Pantel K, Aust DE, Stoehlmacher J: Molecular analysis of the polymorphisms of thymidylate synthase on cell-free circulating DNA in blood of patients with advanced colorectal carcinoma. Int J Cancer 2010, 127:881-888.
  • [37]Lee SY, Hahn CY, Lee JF, Chen SL, Chen SH, Yeh TL, Kuo PH, Lee IH, Yang YK, Huang SY: MAOA-uVNTR polymorphism may modify the protective effect of ALDH2 gene against alcohol dependence in antisocial personality disorder. Alcohol Clin Exp Res 2009, 33:985-990.
  • [38]Munafo MR, Johnstone EC: Smoking status moderates the association of the dopamine D4 receptor (DRD4) gene VNTR polymorphism with selective processing of smoking-related cues. Addict Biol 2008, 13:435-439.
  • [39]Herman AI, Kaiss KM, Ma R, Philbeck JW, Hasan A, Dasti H, DePetrillo PB: Serotonin transporter promoter polymorphism and monoamine oxidase type A VNTR allelic variants together influence alcohol binge drinking risk in young women. Am J Med Genet B Neuropsychiatr Genet 2005, 133:74-78.
  • [40]Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M, Hawi Z: Multiple marker analysis at the promoter region of the DRD4 gene and ADHD: evidence of linkage and association with the SNP −616. Am J Med Genet B Neuropsychiatr Genet 2004, 131:33-37.
  • [41]Coutinho AM, Oliveira G, Morgadinho T, Fesel C, Macedo TR, Bento C, Marques C, Ataide A, Miguel T, Borges L, Vicente AM: Variants of the serotonin transporter gene (SLC6A4) significantly contribute to hyperserotonemia in autism. Mol Psychiatry 2004, 9:264-271.
  • [42]Hranilovic D, Stefulj J, Furac I, Kubat M, Balija M, Jernej B: Serotonin transporter gene promoter (5-HTTLPR) and intron 2 (VNTR) polymorphisms in Croatian suicide victims. Biol Psychiatry 2003, 54:884-889.
  • [43]Anguelova M, Benkelfat C, Turecki G: A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry 2003, 8:574-591.
  • [44]Visel A, Rubin EM, Pennacchio LA: Genomic views of distant-acting enhancers. Nature 2009, 461:199-205.
  • [45]Shanley L, Davidson S, Lear M, Thotakura AK, McEwan IJ, Ross RA, MacKenzie A: Long-range regulatory synergy is required to allow control of the TAC1 locus by MEK/ERK signalling in sensory neurones. Neurosignals 2010, 18:173-185.
  • [46]Wong HM, Stegle O, Rodgers S, Huppert JL: A toolbox for predicting g-quadruplex formation and stability. J Nucleic Acids 2010., 2010
  • [47]Taira T, Takahashi K, Kitagawa R, Iguchi-Ariga SM, Ariga H: Molecular cloning of human and mouse DJ-1 genes and identification of Sp1-dependent activation of the human DJ-1 promoter. Gene 2001, 263:285-292.
  • [48]Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE: Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988, 332:164-166.
  • [49]Wilund KR, Yi M, Campagna F, Arca M, Zuliani G, Fellin R, Ho YK, Garcia JV, Hobbs HH, Cohen JC: Molecular mechanisms of autosomal recessive hypercholesterolemia. Hum Mol Genet 2002, 11:3019-3030.
  • [50]Haddley K, Vasiliou AS, Ali FR, Paredes UM, Bubb VJ, Quinn JP: Molecular genetics of monoamine transporters: relevance to brain disorders. Neurochem Res 2008, 33:652-667.
  • [51]Park JH, Park J, Choi JK, Lyu J, Bae MG, Lee YG, Bae JB, Park DY, Yang HK, Kim TY, Kim YJ: Identification of DNA methylation changes associated with human gastric cancer. BMC Med Genomics 2011, 4:82. BioMed Central Full Text
  • [52]Konkel MK, Batzer MA: A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 2010, 20:211-221.
  • [53]Kulski JK, Shigenari A, Inoko H: Polymorphic SVA retrotransposons at four loci and their association with classical HLA class I alleles in Japanese, Caucasians and African Americans. Immunogenetics 2010, 62:211-230.
  • [54]Stevens HC, Fiskerstrand C, Bubb VJ, Dalziel R, Quinn JP: A regulatory domain spanning the repeat sequence RE1 from herpes simplex virus type 1 has cell specific differential functions in trigeminal neurons and fibroblasts. FEBS Lett 2009, 583:3335-3338.
  • [55]Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P: DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 2003, 24:159-160.
  • [56]Le Naour F, Misek DE, Krause MC, Deneux L, Giordano TJ, Scholl S, Hanash SM: Proteomics-based identification of RS/DJ-1 as a novel circulating tumor antigen in breast cancer. Clin Cancer Res 2001, 7:3328-3335.
  文献评价指标  
  下载次数:27次 浏览次数:17次