BMC Genomics | |
Benzopyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice | |
David H Phillips2  Colin S Cooper3  Volker M Arlt2  Daniel S Brewer4  Jie Zuo1  | |
[1] Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS, UK;Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK;The Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK;School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK | |
关键词: miRNA; Microarray; Gene expression; DNA adducts; Benzo[a]pyrene; Organotropism; Carcinogenicity; | |
Others : 1128476 DOI : 10.1186/1471-2164-15-880 |
|
received in 2014-03-07, accepted in 2014-09-23, 发布年份 2014 | |
【 摘 要 】
Background
Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP.
Results
BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated.
Conclusions
Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism.
【 授权许可】
2014 Zuo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150224010036404.pdf | 3071KB | download | |
Figure 6. | 99KB | Image | download |
Figure 5. | 139KB | Image | download |
Figure 4. | 73KB | Image | download |
Figure 3. | 54KB | Image | download |
Figure 2. | 185KB | Image | download |
Figure 1. | 75KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Otteneder M, Lutz WK: Correlation of DNA adduct levels with tumor incidence: carcinogenic potency of DNA adducts. Mutat Res 1999, 424(1–2):237-247.
- [2]Hakura A, Sonoda J, Tsutsui Y, Mikami T, Imade T, Shimada M, Yaguchi S, Yamanaka M, Tomimatsu M, Tsukidate K: Toxicity profile of benzo[a]pyrene in the male LacZ transgenic mouse (MutaMouse) following oral administration for 5 consecutive days. Regul Toxicol Pharmacol 1998, 27(3):273-279.
- [3]Hakura A, Tsutsui Y, Sonoda J, Kai J, Imade T, Shimada M, Sugihara Y, Mikami T: Comparison between in vivo mutagenicity and carcinogenicity in multiple organs by benzo[a]pyrene in the lacZ transgenic mouse (Muta Mouse). Mutat Res 1998, 398(1–2):123-130.
- [4]Hakura A, Tsutsui Y, Sonoda J, Mikami T, Tsukidate K, Sagami F, Kerns WD: Multiple organ mutation in the lacZ transgenic mouse (Muta mouse) 6 months after oral treatment (5 days) with benzo[a]pyrene. Mutat Res 1999, 426(1):71-77.
- [5]Chen T, Guo L, Zhang L, Shi L, Fang H, Sun Y, Fuscoe JC, Mei N: Gene expression profiles distinguish the carcinogenic effects of aristolochic acid in target (kidney) and non-target (liver) tissues in rats. BMC Bioinformatics 2006, 7(Suppl 2):S20. BioMed Central Full Text
- [6]Arbillaga L, Vettorazzi A, Gil AG, van Delft JH, Garcia-Jalon JA, Lopez De Cerain A: Gene expression changes induced by ochratoxin A in renal and hepatic tissues of male F344 rat after oral repeated administration. Toxicol Appl Pharmacol 2008, 230(2):197-207.
- [7]Labib S, Yauk C, Williams A, Arlt VM, Phillips DH, White PA, Halappanavar S: Subchronic oral exposure to benzo(a)pyrene leads to distinct transcriptomic changes in the lungs that are related to carcinogenesis. Toxicol Sci 2012, 129(1):213-224.
- [8]Labib S, Guo CH, Williams A, Yauk CL, White PA, Halappanavar S: Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: relevance to human cancer risk. Toxicol Appl Pharmacol 2013, 273(2):269-280.
- [9]Arlt VM, Zuo J, Trenz K, Roufosse CA, Lord GM, Nortier JL, Schmeiser HH, Hollstein M, Phillips DH: Gene expression changes induced by the human carcinogen aristolochic acid I in renal and hepatic tissue of mice. Int J Cancer 2011, 128(1):21-32.
- [10]Phillips DH, Arlt VM: The 32P-postlabeling assay for DNA adducts. Nat Protoc 2007, 2(11):2772-2781.
- [11]Wood AW, Levin W, Lu AY, Yagi H, Hernandez O, Jerina DM, Conney AH: Metabolism of benzo(a)pyrene and benzo(a)pyrene derivatives to mutagenic products by highly purified hepatic microsomal enzymes. J Biol Chem 1976, 251(16):4882-4890.
- [12]Omiecinski CJ, Hassett C, Hosagrahara V: Epoxide hydrolase–polymorphism and role in toxicology. Toxicol Lett 2000, 112–113:365-370.
- [13]Lewis DF, Ioannides C, Parke DV: Molecular modelling of cytochrome CYP1A1: a putative access channel explains differences in induction potency between the isomers benzo(a)pyrene and benzo(e)pyrene, and 2- and 4-acetylaminofluorene. Toxicol Lett 1994, 71(3):235-243.
- [14]Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML, Shertzer HG, Nebert DW: Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 2004, 65(5):1225-1237.
- [15]van Oostrom CT, Boeve M, van Den Berg J, de Vries A, Dolle ME, Beems RB, van Kreijl CF, Vijg J, van Steeg H: Effect of heterozygous loss of p53 on benzo[a]pyrene-induced mutations and tumors in DNA repair-deficient XPA mice. Environ Mol Mutagen 1999, 34(2–3):124-130.
- [16]Goldstein LS, Weyand EH, Safe S, Steinberg M, Culp SJ, Gaylor DW, Beland FA, Rodriguez LV: Tumors and DNA adducts in mice exposed to benzo[a]pyrene and coal tars: implications for risk assessment. Environ Health Perspect 1998, 106(Suppl 6):1325-1330.
- [17]Schneider K, Roller M, Kalberlah F, Schuhmacher-Wolz U: Cancer risk assessment for oral exposure to PAH mixtures. J Appl Toxicol 2002, 22(1):73-83.
- [18]Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA: A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 1998, 19(1):117-124.
- [19]Culp SJ, Warbritton AR, Smith BA, Li EE, Beland FA: DNA adduct measurements, cell proliferation and tumor mutation induction in relation to tumor formation in B6C3F1 mice fed coal tar or benzo[a]pyrene. Carcinogenesis 2000, 21(7):1433-1440.
- [20]Arlt VM, Stiborova M, Henderson CJ, Thiemann M, Frei E, Aimova D, Singh R, Gamboa da Costa G, Schmitz OJ, Farmer PB, Wolf CR, Phillips DH: Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experiments with Hepatic Cytochrome P450 Reductase Null mice. Carcinogenesis 2008, 29(3):656-665.
- [21]Hakura A, Tsutsui Y, Sonoda J, Tsukidate K, Mikami T, Sagami F: Comparison of the mutational spectra of the lacZ transgene in four organs of the MutaMouse treated with benzo[a]pyrene: target organ specificity. Mutat Res 2000, 447(2):239-247.
- [22]Nagao M, Fujita H, Ochiai M, Wakabayashi K, Sofuni T, Matsushima T, Sugimura T, Ushijima T: No direct correlation between mutant frequencies and cancer incidence induced by MeIQ in various organs of Big Blue mice. Mutat Res 1998, 400(1–2):251-257.
- [23]Nagao M, Ochiai M, Okochi E, Ushijima T, Sugimura T: LacI transgenic animal study: relationships among DNA-adduct levels, mutant frequencies and cancer incidences. Mutat Res 2001, 477(1–2):119-124.
- [24]de Vries A, Dolle ME, Broekhof JL, Muller JJ, Kroese ED, van Kreijl CF, Capel PJ, Vijg J, van Steeg H: Induction of DNA adducts and mutations in spleen, liver and lung of XPA-deficient/lacZ transgenic mice after oral treatment with benzo[a]pyrene: correlation with tumour development. Carcinogenesis 1997, 18(12):2327-2332.
- [25]Kohara A, Suzuki T, Honma M, Ohwada T, Hayashi M: Mutagenicity of aristolochic acid in the lambda/lacZ transgenic mouse (MutaMouse). Mutat Res 2002, 515(1–2):63-72.
- [26]da Costa GG, Manjanatha MG, Marques MM, Beland FA: Induction of lacI mutations in Big Blue rats treated with tamoxifen and alpha-hydroxytamoxifen. Cancer Lett 2002, 176(1):37-45.
- [27]Bol SA, Horlbeck J, Markovic J, de Boer JG, Turesky RJ, Constable A: Mutational analysis of the liver, colon and kidney of Big Blue rats treated with 2-amino-3-methylimidazo[4,5-f]quinoline. Carcinogenesis 2000, 21(1):1-6.
- [28]Phillips DH, Hewer A, Osborne MR, Cole KJ, Churchill C, Arlt VM: Organ specificity of DNA adduct formation by tamoxifen and alpha-hydroxytamoxifen in the rat: implications for understanding the mechanism(s) of tamoxifen carcinogenicity and for human risk assessment. Mutagenesis 2005, 20(4):297-303.
- [29]Lovegrove FE, Pena-Castillo L, Mohammad N, Liles WC, Hughes TR, Kain KC: Simultaneous host and parasite expression profiling identifies tissue-specific transcriptional programs associated with susceptibility or resistance to experimental cerebral malaria. BMC Genomics 2006, 7:295. BioMed Central Full Text
- [30]Lee WJ, Majumder ZR, Jeoung DI, Lee HJ, Kim SH, Bae S, Lee YS: Organ-specific gene expressions in C57BL/6 mice after exposure to low-dose radiation. Radiat Res 2006, 165(5):562-569.
- [31]Shyamsundar R, Kim YH, Higgins JP, Montgomery K, Jorden M, Sethuraman A, van de Rijn M, Botstein D, Brown PO, Pollack JR: A DNA microarray survey of gene expression in normal human tissues. Genome Biol 2005, 6(3):R22. BioMed Central Full Text
- [32]Bock-Axelsen J, Lotem J, Sachs L, Domany E: Genes overexpressed in different human solid cancers exhibit different tissue-specific expression profiles. Proc Natl Acad Sci U S A 2007, 104(32):13122-13127.
- [33]Amatschek S, Koenig U, Auer H, Steinlein P, Pacher M, Gruenfelder A, Dekan G, Vogl S, Kubista E, Heider KH, Stratowa C, Schreiber M, Sommergruber W: Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res 2004, 64(3):844-856.
- [34]Ertel A, Verghese A, Byers SW, Ochs M, Tozeren A: Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol Cancer 2006, 5(1):55. BioMed Central Full Text
- [35]Sugnet CW, Srinivasan K, Clark TA, O'Brien G, Cline MS, Wang H, Williams A, Kulp D, Blume JE, Haussler D, Aries M Jr: Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLoS Comput Biol 2006, 2(1):e4.
- [36]Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 2000, 408(6810):307-310.
- [37]Harris SL, Levine AJ: The p53 pathway: positive and negative feedback loops. Oncogene 2005, 24(17):2899-2908.
- [38]Riley T, Sontag E, Chen P, Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008, 9(5):402-412.
- [39]Hockley SL, Arlt VM, Jahnke G, Hartwig A, Giddings I, Phillips DH: Identification through microarray gene expression analysis of cellular responses to benzo(a)pyrene and its diol-epoxide that are dependent or independent of p53. Carcinogenesis 2008, 29(1):202-210.
- [40]Aqeilan RI, Hagan JP, Aqeilan HA, Pichiorri F, Fong LY, Croce CM: Inactivation of the Wwox gene accelerates forestomach tumor progression in vivo. Cancer Res 2007, 67(12):5606-5610.
- [41]Yamamoto S, Urano K, Nomura T: Validation of transgenic mice harboring the human prototype c-Ha-ras gene as a bioassay model for rapid carcinogenicity testing. Toxicol Lett 1998, 102–103:473-478.
- [42]Bhattacharya R, Cabral F: A ubiquitous beta-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell 2004, 15(7):3123-3131.
- [43]Shah M, Patel K, Fried VA, Sehgal PB: Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever. J Biol Chem 2002, 277(47):45662-45669.
- [44]Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC: Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 2005, 96(6):635-642.
- [45]Sotgia F, Rui H, Bonuccelli G, Mercier I, Pestell RG, Lisanti MP: Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res 2006, 66(22):10647-10651.
- [46]Shatz M, Liscovitch M: Caveolin-1: A tumor-promoting role in human cancer. Int J Radiat Biol 2008, 84(3):177-189.
- [47]Hirohashi S: Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998, 153(2):333-339.
- [48]Birchmeier W, Behrens J: Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1994, 1198(1):11-26.
- [49]Hajra KM, Fearon ER: Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002, 34(3):255-268.
- [50]Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW: Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997, 275(5307):1787-1790.
- [51]Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997, 275(5307):1790-1792.
- [52]Park WS, Oh RR, Park JY, Lee SH, Shin MS, Kim YS, Kim SY, Lee HK, Kim PJ, Oh ST, Yoo NJ, Lee JY: Frequent somatic mutations of the beta-catenin gene in intestinal-type gastric cancer. Cancer Res 1999, 59(17):4257-4260.
- [53]Saha B, Arase A, Imam SS, Tsao-Wei D, Naritoku WY, Groshen S, Jones LW, Imam SA: Overexpression of E-cadherin and beta-Catenin proteins in metastatic prostate cancer cells in bone. Prostate 2008, 68(1):78-84.
- [54]Yu H, Jove R: The STATs of cancer–new molecular targets come of age. Nat Rev Cancer 2004, 4(2):97-105.
- [55]Yu H, Kortylewski M, Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007, 7(1):41-51.
- [56]Aggarwal BBSG, Ahn KS, Sandur SK, Pandey MK, Kunnumakkara AB, Sung B, Ichikawa H: Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: modern target but ancient solution. Ann N Y Acad Sci 2006, 1091:151-169.
- [57]Dalwadi HKK, Heuze-Vourc'h N, Dohadwala M, Elashoff D, Sharma S, Cacalano N, Lichtenstein A, Dubinett S: Cyclooxygenase-2-dependent activation of signal transducer and activator of transcription 3 by interleukin-6 in non-small cell lung cancer. Clin Cancer Res 2005, 11(21):7674-7682.
- [58]Ren ZST: ErbB-2 activates Stat3 alpha in a Src- and JAK2-dependent manner. J Biol Chem 2002, 277(41):38486-38493.
- [59]Galdiero M, Vitello M, D'Isanto M, Raieta K, Galdiero E: STAT1 and STAT3 phosphorylation by porins are independent of JAKs but are dependent on MAPK pathway and plays a role in U937 cells production of interleukin-6. Cytokine 2006, 36(5-6):218-228.
- [60]Murray PJ: The JAK-STAT Signaling Pathway: Input and Output Integration. J Immunol 2007, 178(5):2623-2629.
- [61]Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, Giancotti FG: Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006, 126(3):489-502.
- [62]Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 2004, 10(8):789-799.
- [63]Classon M, Harlow E: The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2002, 2(12):910-917.
- [64]Gasser S, Raulet D: The DNA damage response, immunity and cancer. Semin Cancer Biol 2006, 16(5):344-347.
- [65]Nohara K, Ao K, Miyamoto Y, Suzuki T, Imaizumi S, Tateishi Y, Omura S, Tohyama C, Kobayashi T: Arsenite-Induced Thymus Atrophy is Mediated by Cell Cycle Arrest: A Characteristic Downregulation of E2F-Related Genes Revealed by a Microarray Approach. Toxicol Sci 2008, 101(2):226-238.
- [66]Besteman EG, Zimmerman KL, Huckle WR, Prater MR, Gogal RM Jr, Holladay SD: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or diethylstilbestrol (DES) cause similar hematopoietic hypocellularity and hepatocellular changes in murine fetal liver, but differentially affect gene expression. Toxicol Pathol 2007, 35(6):788-794.
- [67]Mayhew CN, Carter SL, Fox SR, Sexton CR, Reed CA, Srinivasan SV, Liu X, Wikenheiser-Brokamp K, Boivin GP, Lee JS, Aronow BJ, Thorgeirsson SS, Knudsen ES: RB loss abrogates cell cycle control and genome integrity to promote liver tumorigenesis. Gastroenterology 2007, 133(3):976-984.
- [68]Peden-Adams MM, Liu J, Knutson S, Dancik J, Bryant K, Bodine AB, Dickerson RL: Alterations in immune function and CYP450 activity in adult male deer mice (Peromyscus maniculatus) following exposure to benzo[a]pyrene, pyrene, or chrysene. J Toxicol Environ Health A 2007, 70(21):1783-1791.
- [69]Kadkhoda K, Pourfathollah AA, Pourpak Z, Kazemnejad A: The cumulative activity of benzo(a)pyrene on systemic immune responses with mite allergen extract after intranasal instillation and ex vivo response to ovalbumin in mice. Toxicol Lett 2005, 157(1):31-39.
- [70]Booker CD, White KL Jr: Benzo(a)pyrene-induced anemia and splenomegaly in NZB/WF1 mice. Food Chem Toxicol 2005, 43(9):1423-1431.
- [71]Du HJ, Tang N, Liu BC, You BR, Shen FH, Ye M, Gao A, Huang C: Benzo[a]pyrene-induced cell cycle progression is through ERKs/cyclin D1 pathway and requires the activation of JNKs and p38 mapk in human diploid lung fibroblasts. Mol Cell Biochem 2006, 287(1–2):79-89.
- [72]Mukherjee JJ, Sikka HC: Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkappaB activation: role of p38 MAP kinase. Carcinogenesis 2006, 27(3):631-638.
- [73]Li J, Tang MS, Liu B, Shi X, Huang C: A critical role of PI-3 K/Akt/JNKs pathway in benzo[a]pyrene diol-epoxide (B[a]PDE)-induced AP-1 transactivation in mouse epidermal Cl41 cells. Oncogene 2004, 23(22):3932-3944.
- [74]Chin BY, Choi ME, Burdick MD, Strieter RM, Risby TH, Choi AM: Induction of apoptosis by particulate matter: role of TNF-alpha and MAPK. Am J Physiol 1998, 275(5 Pt 1):L942-L949.
- [75]Yang YM, Conaway CC, Chiao JW, Wang CX, Amin S, Whysner J, Dai W, Reinhardt J, Chung FL: Inhibition of benzo(a)pyrene-induced lung tumorigenesis in A/J mice by dietary N-acetylcysteine conjugates of benzyl and phenethyl isothiocyanates during the postinitiation phase is associated with activation of mitogen-activated protein kinases and p53 activity and induction of apoptosis. Cancer Res 2002, 62(1):2-7.
- [76]Niemann C, Owens DM, Schettina P, Watt FM: Dual role of inactivating Lef1 mutations in epidermis: tumor promotion and specification of tumor type. Cancer Res 2007, 67(7):2916-2921.
- [77]Currier N, Solomon SE, Demicco EG, Chang DL, Farago M, Ying H, Dominguez I, Sonenshein GE, Cardiff RD, Xiao ZX, Sherr DH, Seldin DC: Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol Pathol 2005, 33(6):726-737.
- [78]Kaye FJ: RB and cyclin dependent kinase pathways: defining a distinction between RB and p16 loss in lung cancer. Oncogene 2002, 21(45):6908-6914.
- [79]Lee R, Feinbaum R, Ambros V: A short history of a short RNA. Cell 2004, 116(2 Suppl):S89-S92. 81 p following S96
- [80]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
- [81]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
- [82]Cowland JB, Hother C, Gronbaek K: MicroRNAs and cancer. Apmis 2007, 115(10):1090-1106.
- [83]Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65(16):7065-7070.
- [84]Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR: MicroRNA expression profiles classify human cancers. Nature 2005, 435(7043):834-838.
- [85]Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004, 101(32):11755-11760.
- [86]Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005, 353(17):1793-1801.
- [87]Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9(3):189-198.
- [88]Eder M, Scherr M: MicroRNA and lung cancer. N Engl J Med 2005, 352(23):2446-2448.
- [89]Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 2007, 120(5):1046-1054.
- [90]Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6(4):259-269.
- [91]Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR: Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 2004, 10(11):1813-1819.
- [92]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-866.
- [93]Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM: MicroRNA expression and function in cancer. Trends Mol Med 2006, 12(12):580-587.
- [94]Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM: An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A 2004, 101(26):9740-9744.
- [95]Calin GA, Croce CM: MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 2006, 66(15):7390-7394.
- [96]Yauk CL, Jackson K, Malowany M, Williams A: Lack of change in microRNA expression in adult mouse liver following treatment with benzo(a)pyrene despite robust mRNA transcriptional response. Mutat Res-Gen Tox En 2011, 722(2):131-139.
- [97]Malik AI, Rowan-Carroll A, Williams A, Lemieux CL, Long AS, Arlt VM, Phillips DH, White PA, Yauk CL: Hepatic genotoxicity and toxicogenomic responses in MutaMouse males treated with dibenz[a,h]anthracene. Mutagenesis 2013, 28(5):543-554.
- [98]Elamin BK, Callegari E, Gramantieri L, Sabbioni S, Negrini M: MicroRNA response to environmental mutagens in liver. Mutat Res-Fund Mol M 2011, 717(1–2):67-76.
- [99]Halappanavar S, Wu DM, Williams A, Kuo B, Godschalk RW, Van Schooten FJ, Yauk CL: Pulmonary gene and microRNA expression changes in mice exposed to benzo(a)pyrene by oral gavage. Toxicology 2011, 285(3):133-141.
- [100]Hwang HW, Mendell JT: MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006, 94(6):776-780.
- [101]Osada H, Takahashi T: MicroRNAs in biological processes and carcinogenesis. Carcinogenesis 2007, 28(1):2-12.
- [102]Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Schmeiser HH, Phillips DH: Metabolic activation of the environmental contaminant 3-nitrobenzanthrone by human acetyltransferases and sulfotransferase. Carcinogenesis 2002, 23(11):1937-1945.
- [103]Phillips DH, Castegnaro M: Standardization and validation of DNA adduct postlabelling methods: report of interlaboratory trials and production of recommended protocols. Mutagenesis 1999, 14(3):301-315.
- [104]Tanaka TS, Jaradat SA, Lim MK, Kargul GJ, Wang X, Grahovac MJ, Pantano S, Sano Y, Piao Y, Nagaraja R, Doi H, Wood WH, Becker KG, Ko MS: Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci U S A 2000, 97(16):9127-9132.
- [105]Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002, 30(4):e15.
- [106]Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, et al.: The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004, 32(Database issue):D258-D261.
- [107]Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003, 4(5):3. BioMed Central Full Text
- [108]Pandey R, Guru RK, Mount DW: Pathway Miner: extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data. Bioinformatics 2004, 20(13):2156-2158.