期刊论文详细信息
BMC Genetics
Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii
Martin Flajšhans3  Dmytro Bytyutskyy3  Martin Pšenička3  David Gela3  Marek Rodina3  Arne Ludwig1  Dietmar Lieckfeldt1  Marie Rábová2  Petr Ráb2  Martin Hulák3  Miloš Havelka3 
[1] Department for Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10324 Berlin, Germany;Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Liběchov, Czech Republic;University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
关键词: Triploidization;    Autopolyploidization;    Sperm quality;    Polyploidy determination;    Acipenseridae;   
Others  :  1086032
DOI  :  10.1186/1471-2156-15-5
 received in 2013-07-18, accepted in 2014-01-03,  发布年份 2014
PDF
【 摘 要 】

Background

Evolution of sturgeons and paddlefishes (order Acipenseriformes) is inherently connected with polyploidization events which resulted in differentiation of ploidy levels and chromosome numbers of present acipenseriform species. Moreover, allopolyploidization as well as autopolyploidization seems to be an ongoing process in these fishes and individuals with abnormal ploidy levels were occasionally observed within sturgeon populations. Here, we reported occurrence of Siberian sturgeon (Acipenser baerii) male with abnormal ploidy level for this species, accessed its ploidy level and chromosome number and investigate its potential sterility or fertility in comparison with normal individuals of sterlet (A. ruthenus), Russian sturgeon (A. gueldenstaedtii) and Siberian sturgeon (A. baerii).

Results

Acipenser ruthenus possessed 120 chromosomes, exhibiting recent diploidy (2n), A. gueldenstaedtii and A. baerii had ~245 chromosomes representing recent tetraploidy (4n), and A. baerii male with abnormal ploidy level had ~ 368 chromosomes, indicating recent hexaploidy (6n). Genealogy assessed from the mtDNA control region did not reveal genome markers of other sturgeon species and this individual was supposed to originate from spontaneous 1.5 fold increment in number of chromosome sets with respect to the number most frequently found in nature for this species. Following hormone stimulation, the spontaneous hexaploid male produced normal sperm with ability for fertilization. Fertilization of A. baerii and A. gueldenstaedtii ova from normal 4n level females with sperm of the hexaploid male produced viable, non-malformed pentaploid (5n) progeny with a ploidy level intermediate to those of the parents.

Conclusion

This study firstly described occurrence of hexaploid individual of A. baerii and confirmed its autopolyploid origin. In addition to that, the first detailed evidence about fertility of spontaneous hexaploid sturgeon was provided. If 1.5 fold increment in number of chromosome sets occurring in diploids, resulted triploids possess odd number of chromosome sets causing their sterility or subfertility due to interference of gametogenesis. In contrast, 1.5 fold increment in number of chromosome sets in naturally tetraploid A. baerii resulted in even number of chromosome sets and therefore in fertility of the hexaploid specimen under study.

【 授权许可】

   
2014 Havelka et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113182627847.pdf 852KB PDF download
Figure 4. 78KB Image download
Figure 3. 69KB Image download
Figure 2. 33KB Image download
Figure 1. 28KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]McLysaght A, Hokamp K, Wolfe KH: Extensive genomic duplication during early chordate evolution. Nat Genet 2002, 31:200-204. doi:10.1038/ng884
  • [2]Panopoulou G, Poustka AJ: Timing and mechanism of ancient vertebrate genome duplications – the adventure of a hypothesis. Trends Genet 2005, 21:559-567. doi:10.1016/.tig.2005.08.004
  • [3]Ventakhesh B: Evolution and diversity of fish genomes. Curr Opin Genet Dev 2003, 13:588-592.
  • [4]Hoegg S, Brinkmann H, Taylor JS, Meyer A: Phylogenetic timing of the fish-specific genome correlates with the diversification of teleost fish. J Mol Evol 2004, 59:190-203. doi:10.1007/s00239-004-2613-z
  • [5]Volff JN: Genome evolution and biodiversity in teleost fish. Heredity 2005, 94:280-294. doi:10.1038/sj.hdy.6800635
  • [6]Froschauer A, Braasch I, Volff JN: Fish genomes; comparative genomics and vertebrate evolution. Curr Genomics 2006, 7:43-57. DOI: 1389-2029/06550.00+.00
  • [7]Nelson JS: Fishes of the World. 4th edition. New York, NY, USA: John Wiley and Sons Inc.; 2006.
  • [8]Ludwig A, Belfiore NM, Pitra C, Svirsky V, Jenneckens I: Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser; Huso and Scaphirhynchus). Genetics 2001, 158:1203-1215.
  • [9]Fontana F, Zane L, Pepe A, Congiu L: Polyploidy in Acipenseriformes: cytogenetic and molecular approaches. In Fish cytogenetic. Edited by Pisano E, Ozof-Costaz C, Foresti F, Kapoor BG. New Hampshire, NH, USA: Science Publisher Inc; 2007:385-403.
  • [10]Vasiľev VP: Mechanisms of polyploid evolution in fish: Polyploidy in Sturgeons. In Biology, Conservation and Sustainable Development of Sturgeons. Edited by Carmona R, Domezain A, García-Gallego M, Hernando JA, Rodríguez F, Ruiz-Rejón M. The Netherlands: Springer Science; 2009:97-117. DOI: 10.1007/978-1-4020-8437-9_6
  • [11]Fontana F, Tagliavini J, Congiu C: Sturgeon genetics and cytogenetics: recent advancement and perspectives. Genetic 2001, 111:359-373. doi:10.1023/A:1013711919443
  • [12]Birstein VJ, Poletaev AI, Goncharov BF: DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 1993, 14:377-383.
  • [13]Birstein VJ, Hanner R, Desalle R: Phylogeny of the Acipenseriformes: Cytogenetic and molecular approaches. Env Biol Fishes 1997, 48:127-156.
  • [14]Ludwig A, Debus L, Jenneckens I: A molecular approach for trading control of black caviar. Int Rev Hydrobiology 2002, 87:661-674. DOI: 10.1002/1522 2632(200211)87:5/6B661::AID-IROH661C3.0.CO;2-S
  • [15]Ludwig A, Lippold S, Debus L, Reinartz R: First evidence of hybridization between endangered starlets (Acipenser ruthenus) and exotic Siberian sturgeons (Acipenser baerii) in the Danube River. Biol Invasions 2009, 11:753-760. doi:10.1007/s10530-008-9289-z
  • [16]Nikolyukin NI: Some observations on the histological structure of the gonads of sturgeon hybrids. Trudy VNIRO 1964, 55:145-157. (in Russian)
  • [17]Flajšhans M, Vajcová V: Odd ploidy levels in sturgeon suggest a backcross of interspecific hexaploid sturgeon hybrids to evolutionary tetraploid and/or octaploid parental species. Folia Zool 2000, 49:133-138.
  • [18]Arefjev VA: Sturgeon hybrids: natural reality and practical prospects. Aquac Mag 1997, 23:52-58.
  • [19]Birstein VJ: Sturgeons and Paddlefishes (Acipenseriformes). In Endangered Animals: A Reference Guide to Conflicting Issues. Edited by Reading RP, Miller B. Westport, CT, USA: Greenwood Press; 2000:269-278.
  • [20]Piferrer F, Beaumont A, Falguiere JC, Flajšhans M, Haffray P, Colombo L: Polyploid fish and shellfish: Production; biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 2009, 239:125-156. doi:10.1016/j.aquaculture.2009.04.036
  • [21]Gorshkova G, Gorshkov S, Gordin H, Knibb W: Karyological studies in hybrids of Beluga Huso huso (L.) and the Russian sturgeon Acipenser gueldenstaedtii Brandt. The Israeli J of Aquaculture 1996, 48:35-39.
  • [22]Bytyutskyy D, Srp J, Flajšhans M: Use of Feulgen image analysis densitometry to study the effect of genome size on nuclear size in polyploid sturgeons. J Appl Ichthyol 2012, 28:704-708.
  • [23]Ráb P, Arefjev VA, Rábová M: C-banded karyotype of the sterlet; Acipenser ruthenus; from the Danube River. Sturg Quart 1996, 4(Suppl 4):10-12.
  • [24]Fontana F, Lanfredi M, Chicca M, Congiu L, Tagliavini J, Rossi R: Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes Acipenseriformes). Genome 1999, 42:1008-1012. doi:10.1139/g99-030
  • [25]Arefjev VA, Nikolaev AI: Cytological analysis of the reciprocal hybrids between low- and high-chromosome acipenserids; the great sturgeon; Huso huso (L.); and the Russian sturgeon; Acipenser gueldenstaedti Brandt. Cytologia 1991, 56:495-502.
  • [26]Wang W, Dong Y, Tian ZH, Chen XX, Hu HX: Heteroplasmy in mtDNA control region and phylogenetics of five sturgeons. Zool Res 2009, 30(Suppl 5):487-496.
  • [27]Dudu A, Suciu R, Paraschiv M, Georgescu SE, Costache M, Berrebi P: Nuclear markers of Danube sturgeon hybridization. Int J Mol Sci 2011, 12:6796-6809. doi:ijms12106796/ijms12106796
  • [28]Cherfas NB, Gomelsky B, Ben–Dom N, Hulata G: Evidence for the heritable nature of spontaneous diploidization in common carp Cyprinus carpio L. eggs. Aquac Res 1995, 26:289-292. doi:10.1111/j.1365-2109.1995.tb00914.x
  • [29]Aegerter S, Jalabert B: Effects of post-ovulatory oocyte ageing and temperature on egg quality and on the occurrence of triploid fry in rainbow trout; Oncorhynchus mykiss. Aquaculture 2004, 231:59-71.
  • [30]Ezaz MT, McAndrew BJ, Penman DJ: Spontaneous diploidization of the maternal chromosome set in Nile tilapia (Oreochromis niloticus L.) eggs. Aquac Res 2004, 35:271-277.
  • [31]Centofante L, Bertollo LAC, Moreira-Filho O: Comparative cytogenetics among sympatric species of Characidium (Pisces; Characiformes). Diversity analysis with the description of a ZW sex chromosome system and natural triploidy. Caryologia 2001, 54(Suppl 3):253-260.
  • [32]Borin LA, Martins-Santos IC, Oliveira C: A natural triploid in Trichomycterus davisi (Siluriformes; Trichomycteridae): mitotic and meiotic characterization by chromosome banding and synaptonemal complex analyses. Genetica 2002, 115:253-258.
  • [33]Fontana F, Congiu L, Mudrak VA, Quattro JM, Smith TI, Ware K, Doroshov SI: Evidence of hexaploid karyotype in shortnose sturgeon. Genome 2008, 51:113-119. doi:10.1139/G07-112
  • [34]Zhou H, Fujimoto T, Adachi S, Yamaha E, Arai K: Genome size variation estimated by flow cytometry in Acipenser mikadoi, Huso dauricus in relation to other species of Acipenseriformes. J Appl Ichtyol 2011, 27:484-491. doi:10.1111/j.1439-0426.2010.01648.x
  • [35]Zhou H, Fujimoto T, Adachi S, Abe S, Yamaha E, Arai K: Molecular cytogenetic study on the ploidy status in Acipenser mikadoi. J Appl Ichtyol 2013, 29:51-55. doi:10.1111/jai.12109
  • [36]Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K: The influence of oocyte maturational stage on hatching and triploidy rates in hybrid (bester) sturgeon Huso huso x Acipenser ruthenus. Aquaculture 2005, 245:287-294. DOI: 10.1016/j.aquaculture.2004.11.008
  • [37]Drauch Schreier A, Gille D, Mahardja B, May B: Neutral markers confirm the octaploid origin reveal spontaneous autopolyploidy in white sturgeon, Acipenser transmontanus. J Appl Ichthyol 2011, 27(Suppl 2):24-33. DOI: 10.1111/j.1439-0426.2011.01873.x
  • [38]Dettlaff TA, Ginzburg AS, Schmalhausen OI: Sturgeon fishes: developmental biology and aquaculture. Springer – Verlang: Berlin, Germany; 1993.
  • [39]Hochleitner M: Störe. Österreichischer Agrarverlag: Klosterneuburg, Austria; 1996. (in German)
  • [40]Dzyuba B, Boryshpolets S, Shaliutina A, Rodina M, Yamaner G, Gela D, Dzyuba V, Linhart O: Spermatozoa motility; cryoresistance; and fertilizing ability in sterlet Acipenser ruthenus during sequential stripping. Aquaculture 2012, 356–357:272-278. doi:10.1016/j.aquaculture.2012.05.006
  • [41]Piros B, Glogowski J, Kolman R, Rzemieniecki A, Domagala J, Horváth Á, Urbanyi B, Ciereszko A: Biochemical characterization of Siberian sturgeon Acipenser baerii and sterlet, Acipenser ruthenus, milt plasma and spermatozoa. Fish Physiol Biochem 2002, 26:289-295.
  • [42]Pšenička M, Kašpar V, Rodina M, Gela D, Hulák M, Flajšhans M: Comparative study on ultrastructure and motility parameters of spermatozoa of tetraploid and hexaploid Siberian sturgeon Acipenser baerii. J Appl Ichtyol 2011, 27:683-686. doi:10.1111/j.1439-0426.2011.01685.x
  • [43]Kolářová J, Velíšek J, Nepejchalová L, Svobodová Z, Kouřil J, Hamáčková J, Máchová J, Piačková V, Hajšlová J, Holadová K, Kocourek V, Klimánková E, Modrá H, Dobšíková R, Groch L, Novotný L: Anestethics for fish - Methodology. Vodňany, Czech Republic: University of South Bohemia in České Budějovice; Research Institute for Fisheries and Hydrobiology; 2007. in Czech
  • [44]Gela D, Rodina M, Linhart O: Controlled reproduction of sturgeons (Acipenser) - Methodology. Vodňany, Czech Republic: University of South Bohemia in České Budějovice; Research Institute for Fisheries and Hydrobiology; 2008. in Czech
  • [45]Štěch L, Linhart O, Shelton WL, Mims SD: Minimally invasive surgical removal of ovulated eggs of paddlefish (Polyodon spathula). Aqua Int 1999, 7:129-133.
  • [46]Linhart O, Rodina M, Cosson J: Cryopreservation of sperm in common carp Cyprinus carpio: sperm motility and hatching success of embryos. Cryobiology 2000, 41:241-250. doi:10.1006/cryo.2000.2284
  • [47]Flajšhans M, Cosson J, Rodina M, Linhart O: The application of image cytometry to viability assessment in dual fluorescence-stained fish spermatozoa. Int J Cell Biol 2004, 28:955-959. doi:10.1016/j.cellbi.2004.07.014
  • [48]Linhart O, Rodina M, Flajšhans M, Mavrodiev N, Nebesarova J, Gela D, Kocour M: Studies on sperm of diploid and triploid tench (Tinca tinca L.). Aquac Int 2006, 14:9-25.
  • [49]Pravda D, Svobodová Z: Haematology of fishes. In Veterinary Haematology. Edited by Doubek J, Bouda J, Doubek M, Fürll M, Knotková Z, Pejřilová S. Brno, Czech Republic: Noviko; 2003:381-397. in Czech
  • [50]Lecommandeur D, Haffray P, Philippe L: Rapid flow cytometry method for ploidy determination in salmonid eggs. Aquacult Fish Managem 1994, 25:345-350.
  • [51]Flajšhans M: A model approach to distinguish diploid and triploid fish by means of computer-assisted image analysis. Acta Vet Brno 1997, 66:101-110. doi:avb199766020101/avb199766020101
  • [52]Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S: Improved fish lymphocyte culture for chromosome preparation. Genetica 2001, 111:77-89.
  • [53]Völker M, Kulmann H: Sequential chromosome banding from single acetic acid fixed embryos of Chromaphyosemion killifishes (Cyprinodontiforme; Nothobranchiidae). Cybium 2006, 30(Suppl 2):171-176.
  • [54]Mugue NS, Barmintseva AE, Rastorguev SM, Mugue VN, Barminstev VA: Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification. Russ J Genet 2008, 44:793-798. DOI: 10.1134/S1022795408070065
  • [55]Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A: Geneious v 5.4. 2011. Available: http://www.geneious.com webcite
  • [56]May B, Krueger CC, Kincaid HL: Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 1997, 54:1542-1547. doi:10.1139/cjfas-54-7-1542
  • [57]McQuown EC, Sloze BL, Sheehan RJ, Rodzen J, Tranah GJ, May B: Microsatellite analysis of genetic variation in sturgeon (Acipenseridae): new primer sequences for Scaphirhynchus and Acipenser. Trans Am Fish Soc 2000, 129:1380-1388. DOI 10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2
  • [58]King TL, Lubinski BA, Spidle AP: Microsatellite DNA variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv Genet 2001, 2:103-119. doi:10.1023/A:1011895429669
  文献评价指标  
  下载次数:26次 浏览次数:7次