| BMC Medicine | |
| B. anthracis associated cardiovascular dysfunction and shock: the potential contribution of both non-toxin and toxin components | |
| Peter Q Eichacker1  Xizhong Cui1  Yan Li1  Ping Qiu1  Kenneth E Remy1  | |
| [1] Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA | |
| 关键词: Shock; Cardiovascular dysfunction; Metalloproteases; Lethal and edema toxins; Cell wall components; Anthrax; Bacillus anthracis; | |
| Others : 855628 DOI : 10.1186/1741-7015-11-217 |
|
| received in 2012-12-11, accepted in 2013-09-13, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
The development of cardiovascular dysfunction and shock in patients with invasive Bacillus anthracis infection has a particularly poor prognosis. Growing evidence indicates that several bacterial components likely play important pathogenic roles in this injury. As with other pathogenic Gram-positive bacteria, the B. anthracis cell wall and its peptidoglycan constituent produce a robust inflammatory response with its attendant tissue injury, disseminated intravascular coagulation and shock. However, B. anthracis also produces lethal and edema toxins that both contribute to shock. Growing evidence suggests that lethal toxin, a metalloprotease, can interfere with endothelial barrier function as well as produce myocardial dysfunction. Edema toxin has potent adenyl cyclase activity and may alter endothelial function, as well as produce direct arterial and venous relaxation. Furthermore, both toxins can weaken host defense and promote infection. Finally, B. anthracis produces non-toxin metalloproteases which new studies show can contribute to tissue injury, coagulopathy and shock. In the future, an understanding of the individual pathogenic effects of these different components and their interactions will be important for improving the management of B. anthracis infection and shock.
【 授权许可】
2013 Remy et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140722054252503.pdf | 604KB | ||
| 63KB | Image |
【 图 表 】
【 参考文献 】
- [1]Booth MG, Hood J, Brooks TJ, Hart A: Anthrax infection in drug users. Lancet 2010, 375:1345-1346.
- [2]Hicks CW, Sweeney DA, Cui X, Li Y, Eichacker PQ: An overview of anthrax infection including the recently identified form of disease in injection drug users. Intensive Care Med 2012, 38:1092-1104.
- [3]Booth M, Donaldson L, Xizhong C, Junfeng S, Eichacker P: Comparison of survivors and nonsurvivors in 27 confirmed injectional anthrax cases from the 2009 outbreak in scotland. Crit Care 2013, 17:668.
- [4]National Anthrax Outbreak Control Team: An Outbreak of Anthrax among Drug Users in Scotland, December 2009 to December 2010. Glasgow: Health Protection Scotland; 2011.
- [5]Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith M, Tapper M, Fisk TL, Zaki S, Popovic T, Meyer RF, Quinn CP, Harper SA, Fridkin SK, Sejvar JJ, Shepard CW, McConnell M, Guarner J, Shieh WJ, Malecki JM, Gerberding JL, Hughes JM, Perkins BA: Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001, 7:933-944.
- [6]Seeley EJ, Matthay MA, Wolters PJ: Inflection points in sepsis biology: from local defense to systemic organ injury. Am J Physiol Lung Cell Mol Physiol 2012, 303:L355-363.
- [7]Cinel I, Opal SM: Molecular biology of inflammation and sepsis: a primer. Crit Care Med 2009, 37:291-304.
- [8]Suffredini AF, Munford RS: Novel therapies for septic shock over the past 4 decades. JAMA 2011, 306:194-199.
- [9]Aziz M, Jacob A, Yang WL, Matsuda A, Wang P: Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukocyte Biol 2013, 93:329-342.
- [10]Pickering AK, Merkel TJ: Macrophages release tumor necrosis factor alpha and interleukin-12 in response to intracellular Bacillus anthracis spores. Infect Immun 2004, 72:3069-3072.
- [11]Stearns-Kurosawa DJ, Lupu F, Taylor FB Jr, Kinasewitz G, Kurosawa S: Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am J Pathol 2006, 169:433-444.
- [12]Guichard A, Nizet V, Bier E: New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2012, 14:97-118.
- [13]Coggeshall KM, Lupu F, Ballard J, Metcalf JP, James JA, Farris D, Kurosawa S: The sepsis model: an emerging hypothesis for the lethality of inhalation anthrax. J Cell Mol Med 2013, 17:914-920.
- [14]Hicks CW, Cui X, Sweeney DA, Li Y, Barochia A, Eichacker PQ: The potential contributions of lethal and edema toxins to the pathogenesis of anthrax associated shock. Toxins 2011, 3:1185-1202.
- [15]Triantafilou M, Uddin A, Maher S, Charalambous N, Hamm TS, Alsumaiti A, Triantafilou K: Anthrax toxin evades toll-like receptor recognition, whereas its cell wall components trigger activation via tlr2/6 heterodimers. Cell Microbiol 2007, 9:2880-2892.
- [16]Langer M, Malykhin A, Maeda K, Chakrabarty K, Williamson KS, Feasley CL, West CM, Metcalf JP, Coggeshall KM: Bacillus anthracis peptidoglycan stimulates an inflammatory response in monocytes through the p38 mitogen-activated protein kinase pathway. PLoS One 2008, 3:e3706.
- [17]Iyer JK, Khurana T, Langer M, West CM, Ballard JD, Metcalf JP, Merkel TJ, Coggeshall KM: Inflammatory cytokine response to Bacillus anthracis peptidoglycan requires phagocytosis and lysosomal trafficking. Infect Immun 2010, 78:2418-2428.
- [18]Cui X, Su J, Li Y, Shiloach J, Solomon S, Kaufman JB, Mani H, Fitz Y, Weng J, Altaweel L, Besch V, Eichacker PQ: Bacillus anthracis cell wall produces injurious inflammation but paradoxically decreases the lethality of anthrax lethal toxin in a rat model. Intensive Care Med 2010, 36:148-156.
- [19]Qiu P, Li Y, Shiloach J, Cui X, Sun J, Trinh L, Kubler-Kielb J, Vinogradov E, Mani H, Al-Hamad M, Fitz Y, Eichacker PQ: B. anthracis cell wall peptidoglycan but not lethal or edema toxins produces changes consistent with disseminated intravascular coagulation in a rat model. J Infect Dis 2013, 208:978-989.
- [20]Sun D, Popescu NI, Raisley B, Keshari RS, Dale GL, Lupu F, Coggeshall KM: Bacillus anthracis peptidoglycan activates human platelets through Fc?RII and complement. Blood 2013, 122:571-579.
- [21]Sweeney DA, Hicks CW, Cui X, Li Y, Eichacker PQ: Anthrax infection. Am J Resp Crit Care 2011, 184:1333-1341.
- [22]Lowe DE, Glomski IJ: Cellular and physiological effects of anthrax exotoxin and its relevance to disease. Front Cell Infect Microbiol 2012, 2:76.
- [23]Liu S, Miller-Randolph S, Crown D, Moayeri M, Sastalla I, Okugawa S, Leppla SH: Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe 2010, 8:455-462.
- [24]Akkaladevi N, Hinton-Chollet L, Katayama H, Mitchell J, Szerszen L, Mukherjee S, Gogol EP, Pentelute BL, Collier RJ, Fisher MT: Assembly of anthrax toxin pore: lethal-factor complexes into lipid nanodiscs. Protein Sci 2013, 22:492-501.
- [25]Liu S, Zhang Y, Hoover B, Leppla SH: The receptors that mediate the direct lethality of anthrax toxin. Toxins 2013, 5:1-8.
- [26]Moayeri M, Leppla SH: Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol Aspects Med 2009, 30:439-455.
- [27]Chavarria-Smith J, Vance RE: Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 2013, 9:e1003452.
- [28]Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M: Anthrax lethal factor cleavage of NLRP1 is required for activation of the inflammasome. PLoS Pathog 2012, 8:e1002638.
- [29]Laine E, Martinez L, Blondel A, Malliavin TE: Activation of the edema factor of Bacillus anthracis by calmodulin: evidence of an interplay between the EF-calmodulin interaction and calcium binding. Biophys J 2010, 99:2264-2272.
- [30]Gottle M, Dove S, Kees F, Schlossmann J, Geduhn J, Konig B, Shen Y, Tang WJ, Kaever V, Seifert R: Cytidylyl and uridylyl cyclase activity of Bacillus anthracis edema factor and Bordetella pertussis CyaA. Biochemistry 2010, 49:5494-5503.
- [31]Sweeney DA, Cui X, Solomon SB, Vitberg DA, Migone TS, Scher D, Danner RL, Natanson C, Subramanian GM, Eichacker PQ: Anthrax lethal and edema toxins produce different patterns of cardiovascular and renal dysfunction and synergistically decrease survival in canines. J Infect Dis 2010, 202:1885-1896.
- [32]Barochia AV, Cui X, Sun J, Li Y, Solomon SB, Migone TS, Subramanian GM, Bolmer SD, Eichacker PQ: Protective antigen antibody augments hemodynamic support in anthrax lethal toxin shock in canines. J Infect Dis 2012, 205:818-829.
- [33]Rolando M, Stefani C, Flatau G, Auberger P, Mettouchi A, Mhlanga M, Rapp U, Galmiche A, Lemichez E: Transcriptome dysregulation by anthrax lethal toxin plays a key role in induction of human endothelial cell cytotoxicity. Cell Microbiol 2010, 12:891-905.
- [34]Warfel JM, D'Agnillo F: Anthrax lethal toxin-mediated disruption of endothelial ve-cadherin is attenuated by inhibition of the rho-associated kinase pathway. Toxins 2011, 3:1278-1293.
- [35]Liu T, Milia E, Warburton RR, Hill NS, Gaestel M, Kayyali US: Anthrax lethal toxin disrupts the endothelial permeability barrier through blocking p38 signaling. J Cell Physiol 2012, 227:1438-1445.
- [36]Guichard A, McGillivray SM, Cruz-Moreno B, van Sorge NM, Nizet V, Bier E: Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 2010, 467:854-858.
- [37]Li Y, Cui X, Solomon SB, Remy K, Fitz Y, Eichacker PQ: B. anthracis edema toxin increases camp levels and inhibits phenylephrine stimulated contraction in a rat aortic ring model. Am J Physiol Heart Circ Physiol 2013, 305:H238-250.
- [38]Lawrence WS, Marshall JR, Zavala DL, Weaver LE, Baze WB, Moen ST, Whorton EB, Gourley RL, Peterson JW: Hemodynamic effects of anthrax toxins in the rabbit model and the cardiac pathology induced by lethal toxin. Toxins 2011, 3:721-736.
- [39]Moayeri M, Crown D, Dorward DW, Gardner D, Ward JM, Li Y, Cui X, Eichacker P, Leppla SH: The heart is an early target of anthrax lethal toxin in mice: A protective role for neuronal nitric oxide synthase (nNos). PLoS Pathog 2009, 5:e1000456.
- [40]Kandadi MR, Hua Y, Ma H, Li Q, Kuo SR, Frankel AE, Ren J: Anthrax lethal toxin suppresses murine cardiomyocyte contractile function and intracellular Ca2+ handling via a NADPH oxidase-dependent mechanism. PloS one 2010, 5:e13335.
- [41]Kandadi MR, Yu X, Frankel AE, Ren J: Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy. BMC Med 2012, 10:134. BioMed Central Full Text
- [42]Kandadi MR, Frankel AE, Ren J: Toll-like receptor 4 knockout protects against anthrax lethal toxin-induced cardiac contractile dysfunction: role of autophagy. Br J Pharmacol 2012, 167:612-626.
- [43]Hicks CW, Li Y, Okugawa S, Solomon SB, Moayeri M, Leppla SH, Mohanty A, Subramanian GM, Mignone TS, Fitz Y, Cui X, Eichacker PQ: Anthrax edema toxin has cAMP-mediated stimulatory effects and high-dose lethal toxin has depressant effects in an isolated perfused rat heart model. Am J Physiol Heart Circ Physiol 2011, 300:H1108-1118.
- [44]Barua S, Iyer JK, Larabee JL, Raisley B, Hughes MA, Coggeshall KM, Ballard JD: Toxin inhibition of antimicrobial factors induced byBacillus anthracispeptidoglycan in human blood. Infect Immun 2013, 81:3693-3702.
- [45]Artenstein AW, Opal SM: Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012, 54:1148-1161.
- [46]Raymond B, Ravaux L, Memet S, Wu Y, Sturny-Leclere A, Leduc D, Denoyelle C, Goossens PL, Paya M, Raymondjean M, Touqui L: Anthrax lethal toxin down-regulates type-IIa secreted phospholipase a(2) expression through MAPK/NF-kappaB inactivation. Biochem Pharmacol 2010, 79:1149-1155.
- [47]Ali SR, Timmer AM, Bilgrami S, Park EJ, Eckmann L, Nizet V, Karin M: Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity 2011, 35:34-44.
- [48]Kau JH, Sun DS, Huang HS, Lien TS, Huang HH, Lin HC, Chang HH: Sublethal doses of anthrax lethal toxin on the suppression of macrophage phagocytosis. PLoS One 2010, 5:e14289.
- [49]Maddugoda MP, Stefani C, Gonzalez-Rodriguez D, Saarikangas J, Torrino S, Janel S, Munro P, Doye A, Prodon F, Aurrand-Lions M, Goossens PL, Lafont F, Bassereau P, Lappalainen P, Brochard F, Lemichez E: cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe 2011, 10:464-474.
- [50]Ebrahimi CM, Sheen TR, Renken CW, Gottlieb RA, Doran KS: Contribution of lethal toxin and edema toxin to the pathogenesis of anthrax meningitis. Infect Immun 2011, 79:2510-2518.
- [51]Sayner SL, Balczon R, Frank DW, Cooper DM, Stevens T: Filamin A is a phosphorylation target of membrane but not cytosolic adenylyl cyclase activity. Am J Physiol Lung Cell Mol Physiol 2011, 301:L117-124.
- [52]Sayner SL: Emerging themes of camp regulation of the pulmonary endothelial barrier. Am J Physiol Lung Cell Mol Physiol 2011, 300:L667-678.
- [53]Nguyen C, Feng C, Zhan M, Cross AS, Goldblum SE: Bacillus anthracis-derived edema toxin (ET) counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway. BMC Microbiol 2012, 12:2. BioMed Central Full Text
- [54]Metrich M, Berthouze M, Morel E, Crozatier B, Gomez AM, Lezoualc'h F: Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch 2010, 459:535-546.
- [55]Morgado M, Cairrao E, Santos-Silva AJ, Verde I: Cyclic nucleotide-dependent relaxation pathways in vascular smooth muscle. Cell Mol Life Sci 2012, 69:247-266.
- [56]Shen Y, Zhukovskaya NL, Zimmer MI, Soelaiman S, Bergson P, Wang CR, Gibbs CS, Tang WJ: Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis b virus infection. Proc Natl Acad Sci U S A 2004, 101:3242-3247.
- [57]Laine E, Martinez L, Ladant D, Malliavin T, Blondel A: Molecular motions as a drug target: mechanistic simulations of anthrax toxin edema factor function led to the discovery of novel allosteric inhibitors. Toxins 2012, 4:580-604.
- [58]Larabee JL, Maldonado-Arocho FJ, Pacheco S, France B, DeGiusti K, Shakir SM, Bradley KA, Ballard JD: Glycogen synthase kinase 3 activation is important for anthrax edema toxin-induced dendritic cell maturation and anthrax toxin receptor 2 expression in macrophages. Infect Immun 2011, 79:3302-3308.
- [59]Adekoya OA, Sylte I: The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Des 2009, 73:7-16.
- [60]Popov SG, Popova TG, Hopkins S, Weinstein RS, MacAfee R, Fryxell KJ, Chandhoke V, Bailey C, Alibek K: Effective antiprotease-antibiotic treatment of experimental anthrax. BMC Infect Dis 2005, 5:25. BioMed Central Full Text
- [61]Chung MC, Jorgensen SC, Tonry JH, Kashanchi F, Bailey C, Popov S: Secreted Bacillus anthracis proteases target the host fibrinolytic system. FEMS Immunol Med Microbiol 2011, 62:173-181.
- [62]Chung MC, Jorgensen SC, Popova TG, Tonry JH, Bailey CL, Popov SG: Activation of plasminogen activator inhibitor implicates protease InhA in the acute-phase response to Bacillus anthracis infection. J Med Microbiol 2009, 58:737-744.
- [63]Chung MC, Popova TG, Jorgensen SC, Dong L, Chandhoke V, Bailey CL, Popov SG: Degradation of circulating von Willebrand factor and its regulator ADAMTS13 implicates secreted Bacillus anthracis metalloproteases in anthrax consumptive coagulopathy. J Biol Chem 2008, 283:9531-9542.
- [64]Chung MC, Jorgensen SC, Popova TG, Bailey CL, Popov SG: Neutrophil elastase and syndecan shedding contribute to antithrombin depletion in murine anthrax. FEMS Immunol Med Microbiol 2008, 54:309-318.
- [65]Mukherjee DV, Tonry JH, Kim KS, Ramarao N, Popova TG, Bailey C, Popov S, Chung MC: Bacillus anthracis protease InhA increases blood?brain barrier permeability and contributes to cerebral hemorrhages. PLoS One 2011, 6:e17921.
PDF