BMC Evolutionary Biology | |
Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA | |
Hans K Stenøien1  Reidar Andersen2  Anne Karin Hufthammer4  Knut H Røed3  Jørgen Rosvold1  | |
[1] Section of Natural History, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway;The Norwegian Nature Inspectorate, Box 5672, Sluppen, NO-7485, Trondheim, Norway;Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Box 8146 Dep, N-0033, Oslo, Norway;The Natural History Collections, Bergen Museum, University of Bergen, Box 7800, 5020, Bergen, Norway | |
关键词: Cervus elaphus; Translocation; Genetic diversity; Mitochondrial DNA; Harvesting; Habitat fragmentation; Ancient DNA; | |
Others : 1140238 DOI : 10.1186/1471-2148-12-191 |
|
received in 2012-05-31, accepted in 2012-09-21, 发布年份 2012 | |
【 摘 要 】
Background
Red deer (Cervus elaphus) have been an important human resource for millennia, experiencing intensive human influence through habitat alterations, hunting and translocation of animals. In this study we investigate a time series of ancient and contemporary DNA from Norwegian red deer spanning about 7,000 years. Our main aim was to investigate how increasing agricultural land use, hunting pressure and possibly human mediated translocation of animals have affected the genetic diversity on a long-term scale.
Results
We obtained mtDNA (D-loop) sequences from 73 ancient specimens. These show higher genetic diversity in ancient compared to extant samples, with the highest diversity preceding the onset of agricultural intensification in the Early Iron Age. Using standard diversity indices, Bayesian skyline plot and approximate Bayesian computation, we detected a population reduction which was more prolonged than, but not as severe as, historic documents indicate. There are signs of substantial changes in haplotype frequencies primarily due to loss of haplotypes through genetic drift. There is no indication of human mediated translocations into the Norwegian population. All the Norwegian sequences show a western European origin, from which the Norwegian lineage diverged approximately 15,000 years ago.
Conclusions
Our results provide direct insight into the effects of increasing habitat fragmentation and human hunting pressure on genetic diversity and structure of red deer populations. They also shed light on the northward post-glacial colonisation process of red deer in Europe and suggest increased precision in inferring past demographic events when including both ancient and contemporary DNA.
【 授权许可】
2012 Rosvold et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150324154003866.pdf | 1302KB | download | |
Figure 5. | 72KB | Image | download |
Figure 4. | 22KB | Image | download |
Figure 3. | 24KB | Image | download |
Figure 2. | 24KB | Image | download |
Figure 1. | 66KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Frankham R, Ballou JD, Briscoe DA: Introduction to conservation genetics. Cambridge: Cambridge University Press; 2002.
- [2]Keyghobadi N: The genetic implications of habitat fragmentation for animals. Can J Zool 2007, 85:1049-1064.
- [3]Allendorf FW, England PR, Luikart G, Ritchie PA, Ryman N: Genetic effects of harvest on wild animal populations. Trends Ecol Evol 2008, 23:327-337.
- [4]Reed DH, Frankham R: Correlation between fitness and genetic diversity. Conserv Biol 2003, 17:230-237.
- [5]Garner A, Rachlow JL, Hicks JF: Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 2004, 19:1215-1221.
- [6]Linnell JDC, Zachos FE: Status and distribution patterns of European ungulates: genetics, population history and conservation. In Ungulate management in Europe: problems and practices. Edited by Putman R, Apollonio M, Andersen R. Cambridge: Cambridge University Press; 2011:12-53.
- [7]Burbaité L, Csányi S: Red deer population and harvest changes in Europe. Acta Zool Lit 2010, 20:179-188.
- [8]Rhymer JM, Simberloff D: Extinction by hybridization and introgression. Annu Rev Ecol Syst 1996, 27:83-109.
- [9]Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N: Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Quatern Sci Rev 2008, 27:714-733.
- [10]Gyllensten U, Ryman N, Reuterwall C, Dratch P: Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 1983, 51:561-580.
- [11]Haanes H, Røed KH, Perez-Espona S, Rosef O: Low genetic variation support bottlenecks in Scandinavian red deer. Eur J Wildl Res 2011, 57:1137-1150.
- [12]Lowe VPW, Gardiner AS: A re-examination of the subspecies of red deer (Cervus elaphus) with particular reference to the stocks in Britain. J Zool 1974, 174:185-201.
- [13]Ludt CJ, Schroeder W, Rottmann O, Kuehn R: Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol 2004, 31:1064-1083.
- [14]Skog A, Zachos FE, Rueness EK, Feulner PGD, Mysterud A, Langvatn R, Lorenzini R, Hmwe SS, Lehoczky I, Hartl GB, et al.: Phylogeography of red deer (Cervus elaphus) in Europe. J Biogeogr 2009, 36:66-77.
- [15]Ahlén I: Studies on the red deer, Cervus elaphus L., in Scandinavia. II. Taxonomy and osteology of prehistoric and recent populations. Viltrevy 1965, 3:89-176.
- [16]Ekman S: Djurvärldens utbredningshistoria på Skandinaviska halvön. Stockholm: Albert Bonniers Förlag; 1922.
- [17]Langvatn R: Hjortens erobring av Norge. In Brennpunkt Natur 98/99. Edited by Brox KH. Trondheim: Tapir; 1998:49-71.
- [18]Claussøn Friis P: Norriges oc omliggende øers sandfærdige bescriffuelse. Kjøbenhavn: Melkior Martzan; 1632.
- [19]Ahlén I: Studies on the red deer, Cervus elaphus L., in Scandinavia. I. History of distribution. Viltrevy 1965, 3:1-88.
- [20]Collett R: Hjorten i Norge (Cervus elaphus, atlanticus), nogle biologiske meddelelser. Bergens Museums Aarbog 1909, 6:1-31.
- [21]Stuiver M, Reimer PJ: Extended C-14 data base and revised CALIB 3.0 C-14 age calibration program. Radiocarbon 1993, 35:215-230.
- [22]Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, et al.: IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 2004, 46:1029-1058.
- [23]Fickel J, Bubliy OA, Stache A, Noventa T, Jirsa A, Heurich M: Crossing the border? Structure of the red deer (Cervus elaphus) population from the Bavarian–Bohemian forest ecosystem. Mamm Biol 2012, 77:211-220.
- [24]McDevitt AD, Edwards CJ, O'Toole P, O'Sullivan P, O'Reilly C, Carden RF: Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm Biol 2009, 74:263-273.
- [25]Pérez-Espona S, Pérez-Barberia FJ, Goodall-Copestake WP, Jiggins CD, Gordon IJ: Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity 2009, 102:199-210.
- [26]Hmwe SS, Zachos FE, Sale JB, Rose HR, Hartl GB: Genetic variability and differentiation in red deer (Cervus elaphus) from Scotland and England. J Zool 2006, 270:479-487.
- [27]Nielsen EK, Olesen CR, Pertoldi C, Gravlund P, Barker JSF, Mucci N, Randi E, Loeschcke V: Genetic structure of the Danish red deer (Cervus elaphus). Biol J Linn Soc 2008, 95:688-701.
- [28]Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP: A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim Conserv 2001, 4:1-11.
- [29]Haanes H, Røed KH, Mysterud A, Langvatn L, Rosef O: Consequences for genetic diversity and population performance of introducing continental red deer into the northern distribution range. Conserv Genet 2010, 11:1653-1665.
- [30]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
- [31]Cooper A, Poinar HN: Ancient DNA: do it right or not at all. Science 2000, 289:1139.
- [32]den Tex R-J, Maldonado JE, Thorington R, Leonard JA: Nuclear copies of mitochondrial genes: another problem for ancient DNA. Genetica 2010, 138:979-984.
- [33]Haanes H, Røed KH, Flagstad Ø, Rosef O: Genetic structure in an expanding cervid population after population reduction. Conserv Genet 2010, 11:11-20.
- [34]Wright S: The genetical structure of populations. Ann Eugenics 1951, 15:323-354.
- [35]Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1992, 131:479-491.
- [36]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol Bioinform 2005, 1:47-50.
- [37]Navascués M, Emerson BC: Elevated substitution rate estimates from ancient DNA: model violation and bias of Bayesian methods. Mol Ecol 2009, 18:4390-4397.
- [38]Ho SYW, Shapiro B: Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 2011, 11:423-434.
- [39]Pannell JR: Coalescence in a metapopulation with recurrent local extinction and recolonization. Evolution 2003, 57:949-961.
- [40]Ewens WJ: The sampling theory of selectively neutral alleles. Theor Popul Biol 1972, 3:87-112.
- [41]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
- [42]Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147:915-925.
- [43]Drummond AJ, Rambaut A, Shapiro B, Pybus OG: Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 2005, 22:1185-1192.
- [44]Drummond A, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
- [45]Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W: Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 2002, 161:1307-1320.
- [46]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
- [47]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253-1256.
- [48]Hasegawa M, Kishino H, Yano T-a: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985, 22:160-174.
- [49]Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer webcite
- [50]Suchard MA, Weiss RE, Sinsheimer JS: Bayesian selection of continuous-time Markov Chain evolutionary models. Mol Biol Evol 2001, 18:1001-1013.
- [51]Beaumont MA, Zhang W, Balding DJ: Approximate Bayesian computation in population genetics. Genetics 2002, 162:2025-2035.
- [52]Cornuet J-M, Santos F, Beaumont MA, Robert CP, Marin J-M, Balding DJ, Guillemaud T, Estoup A: Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 2008, 24:2713-2719.
- [53]Städler T, Haubold B, Merino C, Stephan W, Pfaffelhuber P: The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics 2009, 182:205-216.
- [54]Stenøien HK, Shaw AJ, Shaw B, Hassel K, Gunnarsson U: North American origin and recent European establishments of the amphi-Atlantic peat moss Sphagnum angermanicum. Evolution 2011, 65:1181-1194.
- [55]Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
- [56]Miller N, Estoup A, Toepfer S, Bourguet D, Lapchin L, Derridj S, Kim KS, Reynaud P, Furlan L, Guillemaud T: Multiple transatlantic introductions of the western corn rootworm. Science 2005, 310:992.
- [57]Pascual M, Chapuis MP, Mestres F, BalanyÀ J, Huey RB, Gilchrist GW, Serra L, Estoup A: Introduction history of Drosophila subobscura in the New World: a microsatellite-based survey using ABC methods. Mol Ecol 2007, 16:3069-3083.
- [58]Fagundes NJR, Ray N, Beaumont M, Neuenschwander S, Salzano FM, Bonatto SL, Excoffier L: Statistical evaluation of alternative models of human evolution. Proc Natl Acad Sci USA 2007, 104:17614-17619.
- [59]Beaumont MA: Joint determination of topology, divergence time, and immigration in population trees. In Simulations, genetics and human prehistory. Edited by Matsura S, Forster P, Renfrew C. Cambridge: McDonald Institute for Archaeological Research; 2008:135-154.
- [60]Bandelt HJ, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999, 16:37-48.
- [61]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9:1657-1659.
- [62]Huson DH, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006, 23:254-267.
- [63]Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning DNA sequences. J Comput Biol 2000, 7:203-214.
- [64]Leonard JA, Shanks O, Hofreiter M, Kreuz E, Hodges L, Ream W, Wayne RK, Fleischer RC: Animal DNA in PCR reagents plagues ancient DNA research. J Archaeol Sci 2007, 34:1361-1366.
- [65]Gilbert MTP, Binladen J, Miller W, Wiuf C, Willerslev E, Poinar H, Carlson JE, Leebens-Mack JH, Schuster SC: Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 2007, 10:1-10.
- [66]Baker K: Population genetic history of the British roe deer (Capreolus capreolus) and its implications for diversity and fitness. PhD thesis. School of Biological and Biomedical Sciences: Durham University; 2011.
- [67]Ho SYW, Lanfear R, Phillips MJ, Barnes I, Thomas JA, Kolokotronis S-O, Shapiro B: Bayesian estimation of substitution rates from ancient DNA sequences with low information content. Syst Biol 2011, 60:366-375.
- [68]Pontoppidan E: Norges naturlige historie: 1752–1753. København: Rosenkilde og Bagger; 1753. Facsimile edition (1977)
- [69]Bazin E, Glémin S, Galtier N: Population size does not influence mitochondrial genetic diversity in animals. Science 2006, 312:570-572.
- [70]Nabholz B, Glémin S, Galtier N: The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 2009, 9:54.
- [71]Zachos FE, Hartl GB: Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mamm Rev 2011, 41:138-150.
- [72]Eckert CG, Samis KE, Lougheed SC: Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 2008, 17:1170-1188.
- [73]Kaland PE: The origin and management of Norwegian coastal heaths as reflected by pollen analysis. In Anthropogenic indicators in pollen diagrams. Edited by Fasteland A. Rotterdam: A.A.Balkema; 1986:19-36.
- [74]Høgestøl M, Prøsch-Danielsen L: Impulses from agro-pastoralism in the 4th and 3rd millennia BC on the south-western coastal rim of Norway. Environ Archaeol 2006, 11:19-34.
- [75]Myhre B: Agriculture, landscape and society ca. 4000 BC - AD 800. In Norwegian agricultural history. Edited by Gjerdåker B, Lunden K, Myhre B, Øye I. Trondheim: Tapir Academic Press; 2004:12-77.
- [76]Rolstad J, Framstad E, Gundersen V, Storaunet KO: Naturskog i Norge. Definisjoner, økologi og bruk i norsk skog- og miljøforvaltning. Aktuelt fra skogforskningen 2001, 1:1-53.
- [77]Lacy RC: Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv Biol 1987, 1:143-158.
- [78]Pérez-Espona S, Pérez-Barberia FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM: Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 2008, 17:981-996.
- [79]Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, Sellitto D, Cruciani F, Kivisild T, et al.: Tracing European founder lineages in the near eastern mtDNA pool. Am J Hum Genet 2000, 67:1251-1276.
- [80]Niedzialkowska M, Jedrzejewska B, Honnen A-C, Otto T, Sidorovich VE, Perzanowski K, Skog A, Hartl GB, Borowik T, Bunevich AN, et al.: Molecular biogeography of red deer Cervus elaphus from eastern Europe: insights from mitochondrial DNA sequences. Acta Theriol 2011, 56:1-12.