期刊论文详细信息
BMC Genomics
Unravelling the genome of Holy basil: an “incomparable” “elixir of life” of traditional Indian medicine
Ajit Kumar Shasany2  Gopalakrishna Ramaswamy5  Chellappa Gopalakrishnan5  Sriram Parameswaran5  Anil Kumar Tripathi2  Raj Kishori Lal3  Feroz Khan4  Vikrant Gupta2  Alok Kalra1  Shubhra Rastogi2 
[1] Microbial Technology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, Uttar Pradesh, India;Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, U.P., India;Genetics and Plant Breeding Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, U.P., India;Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, U.P., India;Research and Development Unit, Genotypic Technology Private Limited, Bangalore 560094, Karnataka, India
关键词: SSR’s Whole genome sequencing;    Secondary metabolism;    Ocimum sanctum L;    Mitochondria;    Chloroplast;   
Others  :  1208966
DOI  :  10.1186/s12864-015-1640-z
 received in 2014-12-01, accepted in 2015-05-18,  发布年份 2015
PDF
【 摘 要 】

Background

Ocimum sanctum L. (O. tenuiflorum) family-Lamiaceae is an important component of Indian tradition of medicine as well as culture around the world, and hence is known as “Holy basil” in India. This plant is mentioned in the ancient texts of Ayurveda as an “elixir of life” (life saving) herb and worshipped for over 3000 years due to its healing properties.Although used in various ailments, validation of molecules for differential activities is yet to be fully analyzed, as about 80 % of the patents on this plant are on extracts or the plant parts, and mainly focussed on essential oil components. With a view to understand the full metabolic potential of this plant whole nuclear and chloroplast genomes were sequenced for the first time combining the sequence data from 4 libraries and three NGS platforms.

Results

The saturated draft assembly of the genome was about 386 Mb, along with the plastid genome of 142,245 bp, turning out to be the smallest in Lamiaceae. In addition to SSR markers, 136 proteins were identified as homologous to five important plant genomes. Pathway analysis indicated an abundance of phenylpropanoids in O. sanctum. Phylogenetic analysis for chloroplast proteome placed Salvia miltiorrhiza as the nearest neighbor. Comparison of the chemical compounds and genes availability in O. sanctum and S. miltiorrhiza indicated the potential for the discovery of new active molecules.

Conclusion

The genome sequence and annotation of O. sanctum provides new insights into the function of genes and the medicinal nature of the metabolites synthesized in this plant. This information is highly beneficial for mining biosynthetic pathways for important metabolites in related species.

【 授权许可】

   
2015 Rastogi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150601023401471.pdf 3358KB PDF download
Fig. 6. 57KB Image download
Fig. 5. 77KB Image download
Fig. 4. 41KB Image download
Fig. 3. 33KB Image download
Fig. 2. 70KB Image download
Fig. 1. 42KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Darrah HH. The cultivated basils. Buckeye Printing Company, Independence, MO; 1980.
  • [2]Gupta SK, Prakash J, Srivastava S. Validation of traditional claim of Tulsi. Ocimum sanctum Linn. as a medicinal plant. Indian J Exp Biol. 2002; 40(7):765-73.
  • [3]Uma Devi P. Radioprotective, anticarcinogenic and antioxidant properties of the Indian holy basil, Ocimum sanctum (Tulasi). Indian J Exp Biol. 2001; 39(3):185-90.
  • [4]Singh N, Hoette Y. Tulsi: The Mother Medicine of Nature. International Institute of Herbal Medicine, Lucknow, India; 2002.
  • [5]Warrier PK: In: Indian Medicinal Plants. Edited by Longman O. New Delhi: CBS publication; 1995:168
  • [6]Pattanayak P, Behera P, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev. 2010; 4(7):95-105.
  • [7]Folium Ocimi Sancti. In: WHO Monographs on Selected Medicinal Plants. World Health Organization, Geneva, Switzerland; 2002: p.206-216.
  • [8]Wealth of India. In: Publication and Information Directorate. CSIR, New Delhi, India; 1991: p.79-89.
  • [9]Gupta AK, Tandon N, Sharma M. Ocimum sanctum Linn. In: Quality Standards of Indian Medicinal Plants, Volume 5 . Gupta AK, Tandon N, Sharma M, editors. Medicinal Plants Unit, Indian Council of Medical Research, New Delhi, India; 2008: p.275-84.
  • [10]Bhasin M. Ocimum- Taxonomy, medicinal potentialities and economic value of essential oil. Journal of Biosphere. 2012; 1:48-50.
  • [11]Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine. 2000; 7:7-13.
  • [12]Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Urosolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: Correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003; 63:4375-4383.
  • [13]Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E. Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol. 2004; 134:370-379.
  • [14]Tissier A. Trichome Specific Expression: Promoters and Their Applications. Transgenic Plants -Advances and Limitations. 2012;353–378.
  • [15]Rahman S, Islam R, Kamruzzaman, Alam K, Jamal AHM. Ocimum sanctum L.: A review of phytochemical and pharmacological profile. American Journal of Drug Discovery and Development 2011, ISSN 2150-427x / doi:10.3923/ajdd.2011.
  • [16]Rastogi S, Meena S, Bhattacharya A, Ghosh S, Shukla RK, Sangwan NS et al.. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics. 2014; 15:588. BioMed Central Full Text
  • [17]Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X et al.. The Complete Chloroplast Genome Sequence of the Medicinal Plant Salvia miltiorrhiza. PLoS One. 2013; 8(2):e57607.
  • [18]Wolfe KH, Morden CW, Palmer JD. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A. 1992; 89(22):10648-10652.
  • [19]Yi DK, Kim KJ. Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PLoS One. 2012; 7: Article ID e35872
  • [20]Mariotti R, Cultrera NG, Diez CM, Baldoni L, Rubini A. Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison. BMC Plant Biol. 2010; 10:211. BioMed Central Full Text
  • [21]Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S et al.. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS One. 2012; 7:e30531.
  • [22]Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004; 11:247-261.
  • [23]Carels N, Hatey P, Jabbari K, Bernardi G. Compositional properties of homologous coding sequences from plants. J Mol Evol. 1998; 46:45-53.
  • [24]Wendel JF, Cronn RC, Alvarez I, Liu B, Small RL, Senchina DS. Intron Size and Genome Size in Plants. Mol Biol Evol. 2002; 19(12):2346-2352.
  • [25]Deutsch M, Long M. Intron-exon structure of eukaryotic model organisms. Nucleic Acids Res. 1999; 27:3219-3228.
  • [26]Vinogradov AE. Intron-genome size relationship on a large evolutionary scale. J Mol Evol. 1999; 49:376-384.
  • [27]Mclysaght A, Enright AJ, Skrabanek L, Wolfe KH. Estimation of synteny conservation and genome compaction between pufferfish (Fugu) and human. Yeast. 2000; 17:22-36.
  • [28]Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M et al.. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics. 2013; 14:498. BioMed Central Full Text
  • [29]Teich R, Grauvogel C, Petersen J. Intron distribution in Plantae: 500 million years of stasis during land plant evolution. Gene. 2007; 394:96-104.
  • [30]Lynch M, Conery JS. The origins of genome complexity. Science. 2003; 302:1401-1404.
  • [31]Sena JS, Giguère I, Boyle B, Rigault P, Birol I, Zuccolo A et al.. Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC Plant Biol. 2014; 14:95. BioMed Central Full Text
  • [32]Ogata H, Fujibuchi W, Kanehisa M. The size differences among mammalian introns are due to the accumulation of small deletions. FEBS Lett. 1996; 390:99-103.
  • [33]Moriyama EN, Petrov DA, Hartl DL. Genome size and intron size in Drosophila. Mol Biol Evol. 1998; 15:770-773.
  • [34]Petrov DA. Evolution of genome size: new approaches to an old problem. Trends Genet. 2001; 17:23-28.
  • [35]Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL. Evidence for DNA loss as a determinant of genome size. Science. 2000; 287:1060-1062.
  • [36]Lynch M. Intron evolution as a population-genetic process. Proc Natl Acad Sci U S A. 2002; 99:6118-6123.
  • [37]Comeron JM, Kreitman M. The correlation between intron length and recombination in Drosophila: dynamic equilibrium between mutational and selective forces. Genetics. 2000; 156:1175-1190.
  • [38]Gupta S, Shukla R, Roy S, Sen N, Sharma A. In silico SSR and FDM analysis through EST sequences in Ocimum basilicum. Plant Omics Journal. 2010; 3(4):121-128.
  • [39]Gupta PK, Varshney RK. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica. 2000; 113:163-185.
  • [40]Carovic-Stanko K, Liber Z, Besendorfer V, Javornik B, Bohanec B, Kolak I et al.. Genetic relations among basil taxa (Ocimum L.) based on molecular markers, nuclear DNA content, and chromosome number. Plant Syst Evol. 2010; 285:13-22.
  • [41]Lal S, Mistry KN, Thaker R, Shah SD, Vaidya PB. Genetic diversity assessment in six medicinally important species of Ocimum from central Gujarat (India) utilizing RAPD, ISSR and SSR markers. Int J Ad Biol Res. 2012; 2(2):279-288.
  • [42]Mahajan V, Rather IA, Awasthi P, Anand R, Gairola S, Meena SR, et al. Development of chemical and EST-SSR markers for Ocimum genus. Industrial Crops and Products 2014, In Press, doi:10.1016/j.indcrop.2014.10.052.
  • [43]Initiative TAG. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000; 408:796-815.
  • [44]Feuillet C, Keller B. High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci. 1999; 96:8265-8270.
  • [45]Bennetzen JL, SanMiguel P, Chen M, Tikhonov A, Francki M, Avramova Z. Grass genomes. Proc Natl Acad Sci. 1999; 95:1975-1978.
  • [46]Leushkin EV, Sutormin RA, Nabieva ER, Penin AA, Kondrashov AS, Logacheva MD. The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics. 2013; 14:476. BioMed Central Full Text
  • [47]The Tomato Genome Consortium: The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485: doi:10.1038/nature11119.
  • [48]Krishnan NM, Pattnaik S, Jain P, Gaur P, Choudhary R, Vaidyanathan S et al.. A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics. 2012; 13:464. BioMed Central Full Text
  • [49]The French-Italian Public Consortium for Grapevine Genome characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007, 449: doi:10.1038/nature06148.
  • [50]Clegg MT, Zurawski G. Chloroplast DNA and the Study of Plant Phylogeny: Present Status and Future Prospects. In: Soltis PS, Soltis DE, Dpyle JJ, Editors. Molecular Systematics of Plants. New York: Springer US; 1992. 1-13.
  • [51]Palmer JD. Chloroplast DNA and Molecular Phylogeny. Bioessays. 1985; 2(6):263-267.
  • [52]Shukla A, Kaur K, Ahuja P. Tulsi the Medicinal Value. Online International Interdisciplinary Research Journal. 2013; 3(2):9-14.
  • [53]Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol. 2005; 49(2):125-131.
  • [54]Lal RK, Khanuja SPS, Agnihotri AK, Misra HO, Shasany AK, Naqvi AA et al.. High yielding eugenol rich oil producing variety of Ocimum sanctum – CIM-Ayu. J Med Arom Plant Sci. 2003; 25:746-747.
  • [55]Fall RR, West CA. Purification and properties of kaurene synthetase from Fusarium moniliforme. J Biol Chem. 1971; 246(22):6913-6928.
  • [56]BRENDA [http://www.brenda-enzymes.org/enzyme.php?ecno=4.2.3.19].
  • [57]Zhao HX, Zhang L, Fan X, Yang RW, Ding CB, Zhou YH. Studies on chromosome numbers of Salvia miltiorrhiza, S. flava and S. evansiana. Zhongguo Zhong Yao Za Zhi. 2006; 31:1847-1849.
  • [58]Yang L, Ding G, Lin H, Cheng H, Kong Y, Wei Y et al.. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS One. 2013; 8(11): Article ID e80464
  • [59]Hao G, Ji H, Li Y, Shi R, Wang J, Feng L et al.. Exogenous ABA and polyamines enhanced salvianolic acids contents in hairy root cultures of Salvia miltiorrhiza Bge. f.alba. Plant Omics. 2012; 5:446-452.
  • [60]Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A et al.. The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun. 2014; 5:3833.
  • [61]Yu J, Hu S, Wang J, Wong GK, Li S, Liu B et al.. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science. 2002; 296(5565):79-92.
  • [62]Hernandez D, François P, Farinelli L, Osterås M, Schrenzel J. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 2008; 18:802-809.
  • [63]Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. SSPACE: Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011; 27(4):578-579.
  • [64]Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al.. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012; 1(1):18. BioMed Central Full Text
  • [65]Dayarian A, Michael TP, Sengupta AM. SOPRA: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinformatics. 2010; 11:345. BioMed Central Full Text
  • [66]Salmela L, Mäkinen V, Välimäki N, Ylinen J, Ukkonen E. Fast scaffolding with small independent mixed integer programs. Bioinformatics. 2011; 27(23):3259-3265.
  • [67]David M, Dzamba M, Lister D, Ilie L, Brudno M. SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics. 2011; 27(7):1011-1012.
  • [68]Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 2004; 32:W309-312.
  • [69]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al.. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 17:3389-3402.
  • [70]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C et al.. The Pfam protein families database. Nucleic Acids Res. 2012; 40:D290-D301.
  • [71]Eddy SR. Biological sequence analysis using profile hidden Markov models (Version 3.0 March 2010). [http://hmmer.org/].
  • [72]Kent WJ. BLAT–the BLAST-like alignment tool. Genome Res. 2002; 12:656-664.
  • [73]Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357-359.
  • [74]Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al.. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012; 19(5):455-477.
  • [75]Lohse M, Drechsel O, Bock R. OrganellarGenomeDRAW (OGDRAW) - a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007; 52:267-274.
  • [76]Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004; 20(17):3252-3255.
  • [77]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673-4680.
  • [78]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013; 30:2725-2729.
  • [79]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al.. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25(1):25-29.
  • [80]Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6):841-842.
  • [81]Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007; 35:W182-W185.
  文献评价指标  
  下载次数:16次 浏览次数:16次