期刊论文详细信息
BMC Public Health
EPIPOI: A user-friendly analytical tool for the extraction and visualization of temporal parameters from epidemiological time series
Benjamin JJ McCormick1  Wladimir J Alonso1 
[1] Fogarty International Center, National Institutes of Health, Bethesda, 20892, MD, USA
关键词: Data visualization;    Anomalies;    Seasonality;    Trends;    Time series;    Epidemiology;   
Others  :  1162837
DOI  :  10.1186/1471-2458-12-982
 received in 2012-03-13, accepted in 2012-10-09,  发布年份 2012
PDF
【 摘 要 】

Background

There is an increasing need for processing and understanding relevant information generated by the systematic collection of public health data over time. However, the analysis of those time series usually requires advanced modeling techniques, which are not necessarily mastered by staff, technicians and researchers working on public health and epidemiology. Here a user-friendly tool, EPIPOI, is presented that facilitates the exploration and extraction of parameters describing trends, seasonality and anomalies that characterize epidemiological processes. It also enables the inspection of those parameters across geographic regions. Although the visual exploration and extraction of relevant parameters from time series data is crucial in epidemiological research, until now it had been largely restricted to specialists.

Methods

EPIPOI is freely available software developed in Matlab (The Mathworks Inc) that runs both on PC and Mac computers. Its friendly interface guides users intuitively through useful comparative analyses including the comparison of spatial patterns in temporal parameters.

Results

EPIPOI is able to handle complex analyses in an accessible way. A prototype has already been used to assist researchers in a variety of contexts from didactic use in public health workshops to the main analytical tool in published research.

Conclusions

EPIPOI can assist public health officials and students to explore time series data using a broad range of sophisticated analytical and visualization tools. It also provides an analytical environment where even advanced users can benefit by enabling a higher degree of control over model assumptions, such as those associated with detecting disease outbreaks and pandemics.

【 授权许可】

   
2012 Alonso and McCormick; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413081829730.pdf 2316KB PDF download
Figure 5. 96KB Image download
Figure 4. 106KB Image download
Figure 3. 55KB Image download
Figure 2. 59KB Image download
Figure 1. 90KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lee LM, Thacker SB: Public health surveillance and knowing about health in the context of growing sources of health data. Am J Prev Med 2011, 41:636-640.
  • [2]Simonsen L, Clarke MJ, Williamson GD, Stroup DF, Arden NH, Schonberger LB: The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health 1997, 87:1944-1950.
  • [3]Viboud C, Boëlle P-Y, Pakdaman K, Carrat F, Valleron A-J, Flahault A: Influenza epidemics in the United States, France, and Australia, 1972–1997. Emerging Infect Dis 2004, 10:32-39.
  • [4]Serfling RE: Methods for current statistical analysis of excess pneumonia-influenza deaths. Pub Health Rep 1963, 78:494-506.
  • [5]Schuck-Paim C, Viboud C, Simmonsen L, Miller MA, Moura FEA, Fernandes RM, Carvalho ML, Alonso WJ: Were equatorial regions less affected by the 2009 influenza pandemic? The Brazilian experience. PLoS ONE 2012, 7:e41918.
  • [6]Viboud C, Bjørnstad ON, Smith DL, Simonsen L, Miller MA, Grenfell BT: Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science 2006, 312:447-451.
  • [7]Alonso WJ, Viboud C, Simonsen L, Hirano EW, Daufenbach LZ, Miller MA: Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. Am J Epidemiol 2007, 165:1434-1442.
  • [8]Cummings DAT, Irizarry RA, Huang NE, Endy TP, Nisalak A, Ungchusak K, Burke DS: Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 2004, 427:344-347.
  • [9]Grenfell BT, Bjørnstad ON, Kappey J: Travelling waves and spatial hierarchies in measles epidemics. Nature 2001, 414:716-723.
  • [10]McCormick BJJ, Alonso WJ, Miller MA: An exploration of spatial patterns of seasonal diarrhoeal morbidity in Thailand. Epidemiol Infect 2012, 140:1236-1243.
  • [11]Alonso WJ, Acuña-Soto R, Giglio R, Nuckols J, Leyk S, Schuck-Paim C, Viboud C, Miller MA, McCormick BJJ: Spatio-temporal patterns of diarrhoeal mortality in Mexico. Epidemiol Infect 2012, 140:91-99.
  • [12]Periodic Regression. http://marne.u707.jussieu.fr/periodic webcite
  • [13]A Practical Guide to Wavelet Analysis. http://paos.colorado.edu/research/wavelets webcite
  • [14]Hammer O: Palaeontological Statistics (PAST). Oslo; 2010.
  • [15]Legendre P, Legendre L: Numerical ecology. Amsterdam, The Netherlands: Elsevier Science; 1998:20.
  • [16]Cleveland RB, Cleveland WS, McRae JE, Terpenning I: STL: A seasonal-trend decomposition procedure based on loess. J Official Stat 1990, 6:3-73.
  • [17]de Boor C: A Practical Guide to Splines. New York: Springer-Verlag; 1978.
  • [18]Rogers DJ, Hay SI, Packer MJ: Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Annals Trop Med Parasitol 1996, 90:225-242.
  • [19]Rogers DJ: Models for vectors and vector-borne diseases. Adv Parasitol 2006, 62:1-35.
  • [20]Pelat C, Boelle PY, Cowling BJ, Carrat F, Flahault A, Ansart S, Valleron AJ: Online detection and quantification of epidemics. BMC Med Info Decision Making 2007, 7:29. BioMed Central Full Text
  • [21]Housworth J, Langmuir AD: Excess mortality from epidemic influenza, 1957–1966. Am J Epidemiol 1974, 100:40-48.
  • [22]Rogers DJ, Randolph SE, Snow RW, Hay SI: Satellite imagery in the study and forecast of malaria. Nature 2002, 415:710-715.
  • [23]Purse BV, McCormick BJJ, Mellor PS, Baylis M, Boorman J, Borras D, Burgu I, Capela R, Caracappa S, Collantes F: Incriminating bluetongue virus vectors with climate envelope models. J Appl Ecol 2007, 44:1231-1242.
  • [24]Olsson L, Eklund L: Fourier Series for analysis of temporal sequences of satellite sensor imagery. Int J Remote Sensing 1994, 15:3735-3741.
  • [25]Ansart S, Pelat C, Boelle P-Y, Carrat F, Flahault A, Valleron A-J: Mortality burden of the 1918–1919 influenza pandemic in Europe. Influenza Other Respi Viruses 2009, 3:99-106.
  • [26]Simonsen L, Reichert TA, Viboud C, Blackwelder WC, Taylor RJ, Miller MA: Impact of influenza vaccination on seasonal mortality in the US elderly population. Arch Intern Med 2005, 165:265-272.
  • [27]Torrence C, Compo GP: A practical guide to wavelet analysis. Bull Am Met Soc 1998, 79:61-78.
  • [28]Johansson MA, Cummings DAT, Glass GE: Multiyear Climate Variability and Dengue—El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis. PLoS Med 2009, 6:e1000168.
  • [29]Diggle PJ, Zeger SL: Editorial. Biostat 2010, 11:375-375.
  • [30]Erbas , Hyndman R: Data visualisation for time series in environmental epidemiology. J Epidemiol Biostat 2001, 6:433-443.
  • [31]Taleb N: The black swan : the impact of the highly improbable. New York: Random House; 2007.
  文献评价指标  
  下载次数:76次 浏览次数:36次