期刊论文详细信息
Biology Direct
Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches
Didier Lièvremont1  Marie-Claire Lett1  François Delavat1 
[1]UMR7156 Université de Strasbourg/CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
关键词: Bacterial diversity;    Actinobacteria;    Culture-dependent approaches;    Molecular biases;    Uncultured bacteria;    Rare biosphere;    Functional redundancy;    Neutrophilic bacteria;    Alkaliphilic bacteria;    Acid mine drainage (AMD);   
Others  :  796920
DOI  :  10.1186/1745-6150-7-28
 received in 2012-04-24, accepted in 2012-07-17,  发布年份 2012
PDF
【 摘 要 】

Background

Acid Mine Drainages (AMDs) are extreme environments characterized by very acid conditions and heavy metal contaminations. In these ecosystems, the bacterial diversity is considered to be low. Previous culture-independent approaches performed in the AMD of Carnoulès (France) confirmed this low species richness. However, very little is known about the cultured bacteria in this ecosystem. The aims of the study were firstly to apply novel culture methods in order to access to the largest cultured bacterial diversity, and secondly to better define the robustness of the community for 3 important functions As(III) oxidation, cellulose degradation and cobalamine biosynthesis.

Results

Despite the oligotrophic and acidic conditions found in AMDs, the newly designed media covered a large range of nutrient concentrations and a pH range from 3.5 to 9.8, in order to target also non-acidophilic bacteria. These approaches generated 49 isolates representing 19 genera belonging to 4 different phyla. Importantly, overall diversity gained 16 extra genera never detected in Carnoulès. Among the 19 genera, 3 were previously uncultured, one of them being novel in databases. This strategy increased the overall diversity in the Carnoulès sediment by 70% when compared with previous culture-independent approaches, as specific phylogenetic groups (e.g. the subclass Actinobacteridae or the order Rhizobiales) were only detected by culture. Cobalamin auxotrophy, cellulose degradation and As(III)-oxidation are 3 crucial functions in this ecosystem, and a previous meta- and proteo-genomic work attributed each function to only one taxon. Here, we demonstrate that other members of this community can also assume these functions, thus increasing the overall community robustness.

Conclusions

This work highlights that bacterial diversity in AMDs is much higher than previously envisaged, thus pointing out that the AMD system is functionally more robust than expected. The isolated bacteria may be part of the rare biosphere which remained previously undetected due to molecular biases. No matter their current ecological relevance, the exploration of the full diversity remains crucial to decipher the function and dynamic of any community. This work also underlines the importance to associate culture-dependent and -independent approaches to gain an integrative view of the community function.

Reviewers

This paper was reviewed by Sándor Pongor, Eugene V. Koonin and Brett Baker (nominated by Purificacion Lopez-Garcia).

【 授权许可】

   
2012 Delavat et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706020317930.pdf 765KB PDF download
Figure 2 . 67KB Image download
Figure 1 . 48KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

【 参考文献 】
  • [1]Gans J, Wolinsky M, Dunbar J: Microbiology: Computational improvements reveal great bacterial diversity and high toxicity in soil. Science 2005, 309:1387-1390.
  • [2]Baker BJ, Banfield JF: Microbial communities in acid mine drainage. FEMS Microbiol Ecol 2003, 44:139-152.
  • [3]Bruneel O, Duran R, Koffi K, Casiot C, Fourçans A, Elbaz-Poulichet F, Personné JC: Microbial diversity in a pyrite-rich tailings impoundment (Carnoulès, France). Geomicrobiol J 2005, 22:249-257.
  • [4]Tan GL, Shu WS, Hallberg KB, Li F, Lan CY, Huang LN: Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China. FEMS Microbiol Ecol 2007, 59:118-126.
  • [5]LeBlanc M, Casiot C, Elbaz-Poulichet F, Personnè C: Arsenic removal by oxidizing bacteria in a heavily arsenic-contaminated acid mine drainage system (Carnoulès, France). J Geol Soc 2002, 198:267-274.
  • [6]Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC: Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 2006, 72:551-556.
  • [7]Bruneel O, Pascault N, Egal M, Bancon-Montigny C, Goñi-Urriza MS, Elbaz-Poulichet F, Personné JC, Duran R: Archaeal diversity in a Fe-As rich acid mine drainage at Carnoulès (France). Extremophiles 2008, 12:563-571.
  • [8]Bruneel O, Personné JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Flèche A, Grimont PAD: Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 2003, 95:492-499.
  • [9]Casiot C, Morin G, Juillot F, Bruneel O, Personné JC, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F: Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 2003, 37:2929-2936.
  • [10]Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné JC, Leblanc M, Elbaz-Poulichet F, Morin G, Bonnefoy V: Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol 2003, 69:6165-6173.
  • [11]Duquesne K, Lieutaud A, Ratouchniak J, Yarzábal A, Bonnefoy V: Mechanisms of arsenite elimination by Thiomonas sp. isolated from Carnoulès acid mine drainage. Eur J Soil Biol 2007, 43:351-355.
  • [12]Arsène-Ploetze F, Koechler S, Marchal M, Coppée JY, Chandler M, Bonnefoy V, Brochier-Armanet C, Barakat M, Barbe V, Battaglia-Brunet F, et al.: Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 2010, 6:art. e1000859.
  • [13]Bryan CG, Marchal M, Battaglia-Brunet F, Kugler V, Lemaitre-Guillier C, Lièvremont D, Bertin PN, Arsène-Ploetze F: Carbon and arsenic metabolism in Thiomonas strains: Differences revealed diverse adaptation processes. BMC Microbiol 2009, 9:art. 127.
  • [14]Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S, Lauga B, Casiot C, Calteau A, Vallenet D, et al.: Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 2011, 5:1735-1747.
  • [15]Ferrari BC, Binnerup SJ, Gillings M: Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 2005, 71:8714-8720.
  • [16]Delavat F, Phalip V, Forster A, Lett MC, Lièvremont D: Deciphering the role of Paenibacillus strain Q8 in the organic matter recycling in the acid mine drainage of Carnoules. Microb Cell Fact 2012, 11:art. 16.
  • [17]Vieira-Silva S, Rocha EPC: The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet 2010, 6:art. e1000808.
  • [18]Hallberg KB, Johnson DB: Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 2003, 71:139-148.
  • [19]Hao C, Wang L, Gao Y, Zhang L, Dong H: Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles 2010, 14:465-474.
  • [20]Tamaki H, Hanada S, Sekiguchi Y, Tanaka Y, Kamagata Y: Effect of gelling agent on colony formation in solid cultivation of microbial community in lake sediment. Environ Microbiol 2009, 11:1827-1834.
  • [21]Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Barrie Johnson D, Hallberg KB, Baranger P: Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Leeuwenhoek 2006, 89:99-108.
  • [22]Rasmussen LD, Zawadsky C, Binnerup SJ, Øregaard G, Sørensen SJ, Kroer N: Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences. Appl Environ Microbiol 2008, 74:3795-3803.
  • [23]Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P: Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010, 60:249-266.
  • [24]Janssen PH: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 2006, 72:1719-1728.
  • [25]Pankratov TA, Dedysh SN: Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 2010, 60:2951-2959.
  • [26]Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, Bardil A, Morin G, Brown GE, Personné CJ, et al.: Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments. Microb Ecol 2011, 61:793-810.
  • [27]Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci Unit States Am 2006, 103:12115-12120.
  • [28]Campbell BJ, Yu L, Heidelberg JF, Kirchman DL: Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci Unit States Am 2011, 108:12776-12781.
  • [29]Brazelton WJ, Ludwig KA, Sogin ML, Andreishcheva EN, Kelley DS, Shen CC, Edwards RL, Baross JA: Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc Natl Acad Sci Unit States Am 2010, 107:1612-1617.
  • [30]Dworkin J, Shah IM: Exit from dormancy in microbial organisms. Nat Rev Microbiol 2010, 8:890-896.
  • [31]Pester M, Bittner N, Deevong P, Wagner M, Loy A: A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 2010, 4:1-12.
  • [32]Neufeld JD, Chen Y, Dumont MG, Murrell JC: Marine methylotrophs revealed by stable-isotope probing, multiple displacement amplification and metagenomics. Environ Microbiol 2008, 10:1526-1535.
  • [33]Fuhrman JA: Microbial community structure and its functional implications. Nature 2009, 459:193-199.
  • [34]Pedrós-Alió C: Dipping into the rare biosphere. Science 2007, 315:192-193.
  • [35]Farris MH, Olson JB: Detection of Actinobacteria cultivated from environmental samples reveals bias in universal primers. Lett Appl Microbiol 2007, 45:376-381.
  • [36]Hill JE, Town JR, Hemmingsen SM: Improved template representation in cpn 60 polymerase chain reaction (PCR) product libraries generated from complex templates by application of a specific mixture of PCR primers. Environ Microbiol 2006, 8:741-746.
  • [37]Frostegård Å, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P: Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 1999, 65:5409-5420.
  • [38]Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM: Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 2011, 77:1315-1324.
  • [39]Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J, Gilard F, Heintz D, Schaeffer C, Carapito C, Van Dorsselaer A, et al.: In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J 2012, 6:1391-1402.
  • [40]Delavat F, Phalip V, Forster A, Plewniak F, Lett MC, Liévremont D: Amylases without known homologues discovered in an acid mine drainage: Significance and impact. Scientific Reports 2012, 2:art. 354.
  • [41]Weiser HB, Radcliffe RS: The physical chemistry of color lake formation. IV. Red Congo acid and Congo red lakes. Journal of Physical Chemistry 1928, 32:1875-1885.
  • [42]Quéméneur M, Heinrich-Salmeron A, Muller D, Lièvremont D, Jauzein M, Bertin PN, Garrido F, Joulian C: Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria. Appl Environ Microbiol 2008, 74:4567-4573.
  • [43]Heinrich-Salmeron A, Cordi A, Brochier-Armanet C, Halter D, Pagnout C, Abbaszadeh-Fard E, Montaut D, Seby F, Bertin PN, Bauda P, Arsène-Ploetze F: Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB Gene in prokaryotes. Appl Environ Microbiol 2011, 77:4685-4692.
  • [44]Weeger W, Lièvremont D, Perret M, Lagarde F, Hubert JC, Leroy M, Lett MC: Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. BioMetals 1999, 12:141-149.
  • [45]Weisburg WG, Barns SM, Pelletier DA, Lane DJ: 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991, 173:697-703.
  • [46]Lett MC, Muller D, Lièvremont D, Silver S, Santini JM: Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol 2012, 194:207-208.
  • [47]Leblanc M, Achard B, Othman DB, Luck JM, Bertrand-Sarfati J, Personné JC: Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Appl Geochem 1996, 11:541-554.
  • [48]Gobet A, Böer SI, Huse SM, van Beusekom JEE, Quince C, Sogin ML, Boetius A, Ramette A: Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J 2011, 6:542-553.
  • [49]Tan GL, Shu WS, Hallberg KB, Li F, Lan CY, Zhou WH, Huang LN: Culturable and molecular phylogenetic diversity of microorganisms in an open-dumped, extremely acidic Pb/Zn mine tailings. Extremophiles 2008, 12:657-664.
  • [50]Zhang HB, Yang MX, Shi W, Zheng Y, Sha T, Zhao ZW: Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microb Ecol 2007, 54:705-712.
  • [51]He Z, Xiao S, Xie X, Zhong H, Hu Y, Li Q, Gao F, Li G, Liu J, Qiu G: Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. Extremophiles 2007, 11:305-314.
  • [52]Yin H, Cao L, Xie M, Chen Q, Qiu G, Zhou J, Wu L, Wang D, Liu X: Bacterial diversity based on 16S rRNA and gyrB genes at Yinshan mine, China. Syst Appl Microbiol 2008, 31:302-311.
  • [53]Ellis RJ, Morgan P, Weightman AJ, Fry JC: Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 2003, 69:3223-3230.
  • [54]Yashiro E, Spear RN, McManus PS: Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere. J Appl Microbiol 2011, 110:1284-1296.
  • [55]Johnson DB: Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 1998, 27:307-317.
  • [56]Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V: Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 2008, 10:228-237.
  • [57]Lennon JT, Jones SE: Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat Rev Microbiol 2011, 9:119-130.
  • [58]Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL: Microbial diversity in anaerobic sediments at Río Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 2011, 77:6085-6093.
  • [59]Cai L, Liu G, Rensing C, Wang G: Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 2009, 9:art. 4.
  文献评价指标  
  下载次数:23次 浏览次数:15次