期刊论文详细信息
Biotechnology for Biofuels
Improving activity of minicellulosomes by integration of intra- and intermolecular synergies
Qi Xu1  Shi-You Ding1  Roman Brunecky1  Yannick J Bomble1  Michael E Himmel1  John O Baker1 
[1] Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
关键词: Intra- and intermolecular synergies;    Cellulase;    Engineered minicellulosomes;    Cellulosomes;   
Others  :  797920
DOI  :  10.1186/1754-6834-6-126
 received in 2013-06-18, accepted in 2013-08-28,  发布年份 2013
PDF
【 摘 要 】

Background

Complete hydrolysis of cellulose to glucose requires the synergistic action of three general types of glycoside hydrolases; endoglucanases, exoglucanases, and cellobiases. Cellulases that are found in Nature vary considerably in their modular diversity and architecture. They include: non-complexed enzymes with single catalytic domains, independent single peptide chains incorporating multiple catalytic modules, and complexed, scaffolded structures, such as the cellulosome. The discovery of the latter two enzyme architectures has led to a generally held hypothesis that these systems take advantage of intramolecular and intermolecular proximity synergies, respectively, to enhance cellulose degradation. We use domain engineering to exploit both of these concepts to improve cellulase activity relative to the activity of mixtures of the separate catalytic domains.

Results

We show that engineered minicellulosomes can achieve high levels of cellulose conversion on crystalline cellulose by taking advantage of three types of synergism; (1) a complementary synergy produced by interaction of endo- and exo-cellulases, (2) an intramolecular synergy of multiple catalytic modules in a single gene product (this type of synergism being introduced for the first time to minicellulosomes targeting crystalline cellulose), and (3) an intermolecular proximity synergy from the assembly of these cellulases into larger multi-molecular structures called minicellulosomes. The binary minicellulosome constructed in this study consists of an artificial multicatalytic cellulase (CBM4-Ig-GH9-X11-X12-GH8-Doc) and one cellulase with a single catalytic domain (a modified Cel48S with the structure CBM4-Ig-GH48-Doc), connected by a non-catalytic scaffoldin protein. The high level endo-exo synergy and intramolecular synergies within the artificial multifunctional cellulase have been combined with an additional proximity-dependent synergy produced by incorporation into a minicellulosome demonstrating high conversion of crystalline cellulose (Avicel). Our minicellulosome is the first engineered enzyme system confirmed by test to be capable of both operating at temperatures as high as 60°C and converting over 60% of crystalline cellulose to fermentable sugars.

Conclusion

When compared to previously reported minicellulosomes assembled from cellulases containing only one catalytic module each, our novel minicellulosome demonstrates a method for substantial reduction in the number of peptide chains required, permitting improved heterologous expression of minicellulosomes in microbial hosts. In addition, it has been shown to be capable of substantial conversion of actual crystalline cellulose, as well as of the less-well-ordered and more easily digestible fraction of nominally crystalline cellulose.

【 授权许可】

   
2013 Xu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706085950532.pdf 810KB PDF download
Figure 4. 30KB Image download
Figure 3. 54KB Image download
Figure 2. 44KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Himmel ME: Biomass recalcitrance: engineering plants and enzymes for biofuels production (vol 315, pg 804, 2007). Science 2007, 316:982-982.
  • [2]Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer E: Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 2010, 1:323-341.
  • [3]Schwarz WH: The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 2001, 56:634-649.
  • [4]Xu Q, Luo Y, Bu L, Ding S-Y, Lamed R, Bayer EA, Himmel ME: Multifunctional enzyme systems for plant cell wall degradation. In Comprehensive biotechnology, Volume 3. 2nd edition. Edited by Moo-Young M, Butler M, Webb C, Moreira A, Bai F. Amsterdam: Elsevier B.V; 2011:15-25.
  • [5]Zverlov V, Mahr S, Riedel K, Bronnenmeier K: Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 1998, 144:457-465.
  • [6]Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58:521-554.
  • [7]Doi RH, Kosugi A: Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat Rev Microbiol 2004, 2:541-551.
  • [8]Bayer EA, Chanzy H, Lamed R, Shoham Y: Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 1998, 8:548-557.
  • [9]Dijkerman R, OpdenCamp HJM, VanderDrift C, Vogels GD: The role of the cellulolytic high molecular mass (HMM) complex of the anaerobic fungus Piromyces sp. strain E2 in the hydrolysis of microcrystalline cellulose. Arch Microbiol 1997, 167:137-142.
  • [10]Bayer EA, Lamed R, White BA, Flint HJ: From cellulosomes to cellulosomics. Chem Rec 2008, 8:364-377.
  • [11]Zverlov VV, Kellermann J, Schwarz WH: Functional subgenomics of clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 2005, 5:3646-3653.
  • [12]Zhang YHP, Himmel ME, Mielenz JR: Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006, 24:452-481.
  • [13]Fan ZM, Wagschal K, Lee CC, Kong Q, Shen KA, Maiti IB, Yuan L: The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol Bioeng 2009, 102:684-692.
  • [14]Riedel K, Bronnenmeier K: Intramolecular synergism in an engineered exo-endo-1,4-beta-glucanase fusion protein. Mol Microbiol 1998, 28:767-775.
  • [15]Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich JP, Bayer EA: Design and production of active cellulosome chimeras - selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 2001, 276:21257-21261.
  • [16]Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP: Heterologous production, assembly, and secretion of a minicellulosome by clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2005, 71:1215-1222.
  • [17]Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP: Degradation of cellulose substrates by cellulosome chimeras - substrate targeting versus proximity of enzyme components. J Biol Chem 2002, 277:49621-49630.
  • [18]Tsai SL, Oh J, Singh S, Chen RZ, Chen W: Functional assembly of minicellulosomes on the saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2009, 75:6087-6093.
  • [19]Cho HY, Yukawa H, Inui M, Doi RH, Wong SL: Production of minicellulosomes from clostridium cellulovorans in bacillus subtilis WB800. Appl Environ Microbiol 2004, 70:5704-5707.
  • [20]Wen F, Sun J, Zhao HM: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 2010, 76:1251-1260.
  • [21]Sujin Kim S-HB, Kyusung L, Ji-Sook H: Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 2013, 12:1-7. BioMed Central Full Text
  • [22]Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA: Effect of linker length and dockerin position on conversion of a thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 2009, 75:7335-7342.
  • [23]Caspi JBY, Haimovitz R, Gilary H, Irwin DC, Lamed R, Wilson DB, Bayer EA: Thermobifida exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 2010, 4:193-201.
  • [24]Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF: Measuring the crystallinity index of cellulose by solid state C-13 nuclear magnetic resonance. Cellulose 2009, 16:641-647.
  • [25]Anderson TD, Miller JI, Fierobe HP, Clubb RT: Recombinant bacillus subtilis that grows on untreated plant biomass. Appl Environ Microbiol 2013, 79:867-876.
  • [26]Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 2011, 10:89. BioMed Central Full Text
  • [27]Brunecky R, Alahuhta M, Bomble YJ, Xu Q, Baker JO, Ding S-Y, Himmel ME, Lunin VV: Structure and function of the clostridium thermocellum cellobiohydrolase A X1-module repeat: enhancement through stabilization of the CbhA complex. Acta Crystallogr D Biol Crystallogr 2012, 68:292-299.
  • [28]Kataeva IA, Uversky VN, Brewer JM, Schubot F, Rose JP, Wang BC, Ljungdahl LG: Interactions between immunoglobulin-like and catalytic modules in clostridium thermocellum cellulosomal cellobiohydrolase CbhA. Protein Eng Des Sel 2004, 17:759-769.
  • [29]Jeoh T, Wilson DB, Walker LP: Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol Prog 2006, 22:270-277.
  • [30]Woodward J: Synergism in cellulase systems. Bioresour Technol 1991, 36:67-75.
  • [31]Segel IH: Enzyme kinetics-behavior and analysis of rapid equilibrium and steady-state enzyme systems. New York, USA: John Wiley & Sons Inc; 1975.
  • [32]Ghose TK: Measurement of cellulase activity. Pure Appl Chem 1987, 59:257-268.
  • [33]Morag E, Halevy I, Bayer EA, Lamed R: Isolation and properties of a major cellobiohydrolase from the cellulosome of clostridium-thermocellum. J Bacteriol 1991, 173:4155-4162.
  • [34]Olson DG, Tripathi SA, Giannone RJ, Lo J, Caiazza NC, Hogsett DA, Hettich RL, Guss AM, Dubrovsky G, Lynd LR: Deletion of the Cel48S cellulase from clostridium thermocellum. Proc Natl Acad Sci U S A 2010, 107:17727-17732.
  • [35]Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA: Interplay between clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl Environ Microbiol 2010, 76:3236-3243.
  • [36]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology (vol 66, pg 506, 2002). Microbiol Mol Biol Rev 2002, 66:739-739.
  • [37]Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-583.
  • [38]Xu Q, Singh A, Himmel ME: Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 2009, 20:364-371.
  • [39]Xu Q, Gao W, Ding SY, Kenig R, Shoham Y, Bayer EA, Lamed R: The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 2003, 185:4548-4557.
  文献评价指标  
  下载次数:8次 浏览次数:20次