期刊论文详细信息
BMC Cancer
Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening
Zongxiang Zhou1  Manishha Patel1  Nicholas Ng1  Mindy H Hsieh1  Anthony P Orth1  John R Walker1  Serge Batalov1  Jennifer L Harris1  Jun Liu1 
[1] Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
关键词: DNA repair;    DNA damage;    Cancer;    RNAi screen;    Synthetic lethality;    MYC;    PRKDC;   
Others  :  1117898
DOI  :  10.1186/1471-2407-14-944
 received in 2014-03-19, accepted in 2014-11-20,  发布年份 2014
PDF
【 摘 要 】

Background

MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers.

Methods

A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes and proteins of interest were knocked down or inhibited using RNAi technology and small molecule inhibitors, respectively. Quantitative RT-PCR using TaqMan probes examined mRNA expression levels and cell viability was assessed using CellTiter-Glo (Promega). Western blotting was performed to monitor different protein levels in the presence or absence of RNAi or compound treatment. Statistical significance of differences among data sets were determined using unpaired t test (Mann–Whitney test) or ANOVA.

Results

Inhibition of PRKDC using RNAi (RNA interference) or small molecular inhibitors preferentially killed MYC-overexpressing human lung fibroblasts. Moreover, inducible PRKDC knockdown decreased cell viability selectively in high MYC-expressing human small cell lung cancer cell lines. At the molecular level, we found that inhibition of PRKDC downregulated MYC mRNA and protein expression in multiple cancer cell lines. In addition, we confirmed that overexpression of MYC family proteins induced DNA double-strand breaks; our results also revealed that PRKDC inhibition in these cells led to an increase in DNA damage levels.

Conclusions

Our data suggest that the synthetic lethality between PRKDC and MYC may in part be due to PRKDC dependent modulation of MYC expression, as well as MYC-induced DNA damage where PRKDC plays a key role in DNA damage repair.

【 授权许可】

   
2014 Zhou et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150206012217308.pdf 1369KB PDF download
Figure 6. 95KB Image download
Figure 5. 28KB Image download
Figure 4. 40KB Image download
Figure 3. 86KB Image download
Figure 2. 46KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Roberts PJ, Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007, 26(22):3291-3310.
  • [2]Karnoub AE, Weinberg RA: Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 2008, 9(7):517-531.
  • [3]Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry K, Pinchback R, Ligon A, Cho Y, Haery L, Greulich H, Reich M, Winckler W, Lawrence M, Weir B, Tanaka K, Chiang D, Bass A, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S: The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463(7283):899-905.
  • [4]Dang CV: MYC on the path to cancer. Cell 2012, 149(1):22-35.
  • [5]Larsson LG, Henriksson MA: The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010, 316(8):1429-1437.
  • [6]Toyoshima M, Howie HL, Imakura M, Walsh RM, Annis JE, Chang AN, Frazier J, Chau BN, Loboda A, Linsley PS, Cleary M, Park J, Grandori C: Functional genomics identifies therapeutic targets for MYC-driven cancer. Proc Natl Acad Sci U S A 2012, 109(24):9545-9550.
  • [7]Jiang H, Bower KE, Beuscher AE, Zhou B, Bobkov AA, Olson AJ, Vogt PK: Stabilizers of the Max homodimer identified in virtual ligand screening inhibit Myc function. Mol Pharmacol 2009, 76(3):491-502.
  • [8]Nair SK, Burley SK: Structural aspects of interactions within the Myc/Max/Mad network. Curr Top Microbiol Immunol 2006, 302:123-143.
  • [9]Amati B, Littlewood TD, Evan GI, Land H: The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. EMBO J 1993, 12(13):5083-5087.
  • [10]Ferre-D'Amare AR, Prendergast GC, Ziff EB, Burley SK: Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993, 363(6424):38-45.
  • [11]Soucek L, Nasi S, Evan GI: Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 2004, 11(9):1038-1045.
  • [12]Soucek L, Jucker R, Panacchia L, Ricordy R, Tato F, Nasi S: Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res 2002, 62(12):3507-3510.
  • [13]Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI, Soucek L, Nasi S: The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS One 2011, 6(7):e22284.
  • [14]Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN, Swigart LB, Evan GI: Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013, 27(5):504-513.
  • [15]Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, Karnezis AN, Swigart LB, Nasi S, Evan GI: Modelling Myc inhibition as a cancer therapy. Nature 2008, 455(7213):679-683.
  • [16]Kaelin WG Jr: The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 2005, 5(9):689-698.
  • [17]Chan DA, Giaccia AJ: Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 2011, 10(5):351-364.
  • [18]Polyak K, Garber J: Targeting the missing links for cancer therapy. Nat Med 2011, 17(3):283-284.
  • [19]Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009, 361(2):123-134.
  • [20]Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, De Greve J, Lubinski J, Shanley S, Messiou C, A'Hern R, Tutt A, Ashworth A, Stone J, Carmichael J, Schellens JH, de Bono JS, Kaye SB: Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010, 28(15):2512-2519.
  • [21]Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, Wardley A, Mitchell G, Earl H, Wickens M, Carmichael J: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010, 376(9737):235-244.
  • [22]Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, Yerushalmi R, Macpherson E, Carmichael J, Oza A: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol 2011, 12(9):852-861.
  • [23]Mohr S, Bakal C, Perrimon N: Genomic screening with RNAi: results and challenges. Annu Rev Biochem 2010, 79:37-64.
  • [24]DeFazio LG, Stansel RM, Griffith JD, Chu G: Synapsis of DNA ends by DNA-dependent protein kinase. EMBO J 2002, 21(12):3192-3200.
  • [25]Ma Y, Lu H, Tippin B, Goodman MF, Shimazaki N, Koiwai O, Hsieh CL, Schwarz K, Lieber MR: A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell 2004, 16(5):701-713.
  • [26]Wiederschain D, Wee S, Chen L, Loo A, Yang G, Huang A, Chen Y, Caponigro G, Yao YM, Lengauer C, Sellers WR, Benson JD: Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 2009, 8(3):498-504.
  • [27]Molenaar JJ, Ebus ME, Geerts D, Koster J, Lamers F, Valentijn LJ, Westerhout EM, Versteeg R, Caron HN: Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc Natl Acad Sci U S A 2009, 106(31):12968-12973.
  • [28]Rottmann S, Wang Y, Nasoff M, Deveraux QL, Quon KC: A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci U S A 2005, 102(42):15195-15200.
  • [29]Jackson SP: Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002, 23(5):687-696.
  • [30]Park SJ, Oh EJ, Yoo MA, Lee SH: Involvement of DNA-dependent protein kinase in regulation of stress-induced JNK activation. DNA Cell Biol 2001, 20(10):637-645.
  • [31]Peterson SR, Kurimasa A, Oshimura M, Dynan WS, Bradbury EM, Chen DJ: Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells. Proc Natl Acad Sci U S A 1995, 92(8):3171-3174.
  • [32]An J, Yang DY, Xu QZ, Zhang SM, Huo YY, Shang ZF, Wang Y, Wu DC, Zhou PK: DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol Cancer 2008, 7:32. BioMed Central Full Text
  • [33]Karlsson A, Deb-Basu D, Cherry A, Turner S, Ford J, Felsher DW: Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression. Proc Natl Acad Sci U S A 2003, 100(17):9974-9979.
  • [34]Li Z, Owonikoko TK, Sun SY, Ramalingam SS, Doetsch PW, Xiao ZQ, Khuri FR, Curran WJ, Deng X: c-Myc suppression of DNA double-strand break repair. Neoplasia (New York, NY) 2012, 14(12):1190-1202.
  • [35]Leahy JJ, Golding BT, Griffin RJ, Hardcastle IR, Richardson C, Rigoreau L, Smith GC: Identification of a highly potent and selective DNA-dependent protein kinase (DNA-PK) inhibitor (NU7441) by screening of chromenone libraries. Bioorg Med Chem Lett 2004, 14(24):6083-6087.
  • [36]Munck JM, Batey MA, Zhao Y, Jenkins H, Richardson CJ, Cano C, Tavecchio M, Barbeau J, Bardos J, Cornell L, Griffin RJ, Menear K, Slade A, Thommes P, Martin NM, Newell DR, Smith GC, Curtin NJ: Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3 K. Mol Cancer Ther 2012, 11(8):1789-1798.
  • [37]Iijima S, Teraoka H, Date T, Tsukada K: DNA-activated protein kinase in Raji Burkitt's lymphoma cells. Phosphorylation of c-Myc oncoprotein. Eur J Biochem 1992, 206(2):595-603.
  • [38]An J, Xu QZ, Sui JL, Bai B, Zhou PK: Downregulation of c-myc protein by siRNA-mediated silencing of DNA-PKcs in HeLa cells. Int J Cancer 2005, 117(4):531-537.
  • [39]Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA, Felsher DW: MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Cancer Res 2006, 66(13):6598-6605.
  • [40]Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A: Genomic instability in mice lacking histone H2AX. Science 2002, 296(5569):922-927.
  • [41]Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, Bonner RF, Bonner WM, Nussenzweig A: Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 2003, 5(7):675-679.
  • [42]Valdiglesias V, Giunta S, Fenech M, Neri M, Bonassi S: gammaH2AX as a marker of DNA double strand breaks and genomic instability in human population studies. Mutat Res 2013, 735(1):24-40.
  • [43]Montecucco A, Biamonti G: Cellular response to etoposide treatment. Cancer Lett 2007, 252(1):9-18.
  • [44]Arvanitis C, Felsher DW: Conditional transgenic models define how MYC initiates and maintains tumorigenesis. Semin Cancer Biol 2006, 16(4):313-317.
  • [45]Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR: RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011, 478(7370):524-528.
  • [46]Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS: BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011, 146(6):904-917.
  • [47]Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, Bergeron L, Sims RJ 3rd: Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci U S A 2011, 108(40):16669-16674.
  • [48]Wang Y, Engels IH, Knee DA, Nasoff M, Deveraux QL, Quon KC: Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway. Cancer Cell 2004, 5(5):501-512.
  • [49]Goga A, Yang D, Tward AD, Morgan DO, Bishop JM: Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 2007, 13(7):820-827.
  • [50]Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montana MF, D'Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O: Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 2011, 18(12):1331-1335.
  • [51]Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, Kempa S, Zender L, Eilers M, Murphy DJ: Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 2012, 483(7391):608-612.
  • [52]Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, Rao M, Yu P, Dominguez-Vidana R, Liang AC, Solimini NL, Bernardi RJ, Yu B, Hsu T, Golding I, Luo J, Osborne CK, Creighton CJ, Hilsenbeck SG, Schiff R, Shaw CA, Elledge SJ, Westbrook TF: A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012, 335(6066):348-353.
  • [53]Furgason JM, el Bahassi M: Targeting DNA repair mechanisms in cancer. Pharmacol Ther 2013, 137(3):298-308.
  • [54]Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM: Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci U S A 2010, 107(31):13836-13841.
  • [55]Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW: A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 1998, 9(3):367-376.
  • [56]van der Burg M, Ijspeert H, Verkaik NS, Turul T, Wiegant WW, Morotomi-Yano K, Mari PO, Tezcan I, Chen DJ, Zdzienicka MZ, van Dongen JJ, van Gent DC: A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining. J Clin Invest 2009, 119(1):91-98.
  • [57]Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gottlieb TM, Mizuta R, Varghese AJ, Alt FW, Jeggo PA, Jackson SP: Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995, 80(5):813-823.
  • [58]Bosma GC, Custer RP, Bosma MJ: A severe combined immunodeficiency mutation in the mouse. Nature 1983, 301(5900):527-530.
  • [59]Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM: DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 1995, 267(5201):1178-1183.
  • [60]Taccioli GE, Amatucci AG, Beamish HJ, Gell D, Xiang XH, Torres Arzayus MI, Priestley A, Jackson SP, Marshak Rothstein A, Jeggo PA, Herrera VL: Targeted disruption of the catalytic subunit of the DNA-PK gene in mice confers severe combined immunodeficiency and radiosensitivity. Immunity 1998, 9(3):355-366.
  • [61]Zhao Y, Thomas HD, Batey MA, Cowell IG, Richardson CJ, Griffin RJ, Calvert AH, Newell DR, Smith GC, Curtin NJ: Preclinical evaluation of a potent novel DNA-dependent protein kinase inhibitor NU7441. Cancer Res 2006, 66(10):5354-5362.
  • [62]Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK: Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008, 14(12):1351-1356.
  • [63]Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J, Baselga J: NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 2008, 68(19):8022-8030.
  • [64]Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, Garcia-Echeverria C: Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008, 7(7):1851-1863.
  • [65]Goodwin JF, Knudsen KE: Beyond DNA Repair: DNA-PK Function in Cancer. Cancer Discovery 2014, 4(10):1126-1139.
  • [66]Garcia-Echeverria C, Sellers WR: Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008, 27(41):5511-5526.
  • [67]Anderson CW, Carter TH: The DNA-activated protein kinase – DNA-PK. Curr Top Microbiol Immunol 1996, 217:91-111.
  • [68]Jackson SP: DNA damage detection by DNA dependent protein kinase and related enzymes. Cancer Surv 1996, 28:261-279.
  • [69]Shimomura A, Takasaki A, Nomura R, Hayashi N, Senda T: Identification of DNA-dependent protein kinase catalytic subunit as a novel interaction partner of lymphocyte enhancer factor 1. Med Mol Morphol 2013, 46(1):14-19.
  • [70]Huang J, Nueda A, Yoo S, Dynan WS: Heat shock transcription factor 1 binds selectively in vitro to Ku protein and the catalytic subunit of the DNA-dependent protein kinase. J Biol Chem 1997, 272(41):26009-26016.
  • [71]Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA, Patel S, Wang X, Liang H, Yu J, Palanisamy N, Siddiqui J, Yan W, Cao X, Mehra R, Sabolch A, Basrur V, Lonigro RJ, Yang J, Tomlins SA, Maher CA, Elenitoba-Johnson KS, Hussain M, Navone NM, Pienta KJ, Varambally S, Feng FY, Chinnaiyan AM: Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 2011, 19(5):664-678.
  文献评价指标  
  下载次数:112次 浏览次数:23次