Biotechnology for Biofuels | |
Analysis of pectin mutants and natural accessions of Arabidopsis highlights the impact of de-methyl-esterified homogalacturonan on tissue saccharification | |
Fedra Francocci1  Elisa Bastianelli1  Vincenzo Lionetti1  Simone Ferrari1  Giulia De Lorenzo1  Daniela Bellincampi1  Felice Cervone1  | |
[1] Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy | |
关键词: Arabidopsis thaliana; Homogalacturonan; Pectin; Plant cell wall; Saccharification; | |
Others : 794655 DOI : 10.1186/1754-6834-6-163 |
|
received in 2013-07-31, accepted in 2013-10-25, 发布年份 2013 | |
【 摘 要 】
Background
Plant biomass is a potentially important renewable source of energy and industrial products. The natural recalcitrance of the cell walls to enzymatic degradation (saccharification), which plants have evolved to defend themselves from biotic stresses, represents a major bottleneck for the industrial bioconversion of lignocellulosic biomasses. The identification of factors that influence the cell wall recalcitrance to saccharification may help to overcome the existing limitations that hamper the utilization of biomass.
Results
Here we have investigated in Arabidopsis thaliana the impact of homogalacturonan (HG) content and structure on tissue saccharification. We characterized mutants affected in genes encoding proteins involved in HG biosynthesis (quasimodo2-1; qua2-1) and methylesterification (pectin methylesterase 3; pme3). We also analyzed the natural variation of Arabidopsis through the characterization of a nested core collection of 24 accessions generated to maximize genetic variability. We found a negative correlation between the level of de-methyl-esterified HG (HGA) and cellulose degradability.
Conclusions
We propose to use the level of HGA domains as a biochemical marker of the cell wall recalcitrance to saccharification. This may be utilized for selecting, on a large scale, natural variants or mutants with improved bioconversion features.
【 授权许可】
2013 Francocci et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140705071642556.pdf | 358KB | download | |
Figure 5. | 41KB | Image | download |
Figure 4. | 71KB | Image | download |
Figure 3. | 28KB | Image | download |
Figure 2. | 19KB | Image | download |
Figure 1. | 22KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Kumar R, Singh S, Singh OV: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 2008, 35:377-391.
- [2]Sun Y, Cheng JY: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002, 83:1-11.
- [3]Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquie J: Ethanol production from lignocellulosic biomass. Oil Gas Sci Technol 1999, 54:67-94.
- [4]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
- [5]Pauly M, Keegstra K: Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 2008, 54:559-568.
- [6]Abasolo W, Eder M, Yamauchi K, Obel N, Reinecke A, Neumetzler L, Dunlop JW, Mouille G, Pauly M, Höfte H, Burgert I: Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2009, 2:990-999.
- [7]Nookaraju A, Pandey SK, Bae HJ, Joshi CP: Designing cell walls for improved bioenergy production. Mol Plant 2012, 6:8-10.
- [8]Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K: Plant cell walls to ethanol. Biochem J 2012, 442:241-252.
- [9]Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 2007, 25:759-761.
- [10]Xiao C, Anderson CT: Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 2013, 4:67.
- [11]Mohnen D: Pectin structure and biosynthesis. Curr Op Plant Biol 2008, 11:266-277.
- [12]Pelloux J, Rustérucci C, Mellerowicz EJ: New insights into pectin methylesterase structure and function. Trends Plant Sci 2007, 12:267-277.
- [13]Carpita N, McCann M: The cell wall. In Biochemistry and Molecular Biology of Plants. Edited by Buchanan BB, Gruissem W, Jones RL, Rockville MD. American Society of Plant Physiologists; 2000:52-108.
- [14]Chanliaud E, Gidley MJ: In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 1999, 20:25-35.
- [15]Capodicasa C, Vairo D, Zabotina O, McCartney L, Caprari C, Mattei B, Manfredini C, Aracri B, Benen J, Knox JP, De Lorenzo G, Cervone F: Targeted modification of homogalacturonan by transgenic expression of a fungal polygalacturonase alters plant growth. Plant Physiol 2004, 135:1294-1304.
- [16]Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G, Cervone F, Bellincampi D: Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett 2004, 557:199-203.
- [17]Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D, Galletti R, D'Ovidio R, De Lorenzo G, Cervone F: Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc Natl Acad Sci U S A 2010, 107:616-621.
- [18]Mouille G, Ralet MC, Cavelier C, Eland C, Effroy D, Hématy K, McCartney L, Truong HN, Gaudon V, Thibault JF, Marchant A, Höfte H: Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 2007, 50:605-614.
- [19]Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ, Salvi G, Cervone F, Bellincampi D: Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol Plant-Microbe Interact 2011, 24:432-440.
- [20]McKhann HI, Camilleri C, Berard A, Bataillon T, David JL, Reboud X, Le C,V, Caloustian C, Gut IG, Brunel D: Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 2004, 38:193-202.
- [21]Jäger G, Wu Z, Garschhammer K, Engel P, Klement T, Rinaldi R, Spiess AC, Büchs J: Practical screening of purified cellobiohydrolases and endoglucanases with alpha-cellulose and specification of hydrodynamics. Biotechnol Biofuels 2010, 3:18. BioMed Central Full Text
- [22]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
- [23]Willats WG, Gilmartin PM, Mikkelsen JD, Knox JP: Cell wall antibodies without immunization: generation and use of de- esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant J 1999, 18:57-65.
- [24]Moller I, Marcus SE, Haeger A, Verhertbruggen Y, Verhoef R, Schols H, Ulvskov P, Mikkelsen JD, Knox JP, Willats W: High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj J 2008, 25:37-48.
- [25]Powell DA, Morris ER, Gidley MJ, Rees DA: Conformations and interactions of pectins II. Influence of residue sequence on chain association in calcium pectate gels. J Mol Biol 1982, 155:517-531.
- [26]Walton JD: Deconstructing the cell wall. Plant Physiol 1994, 104:1113-1118.
- [27]National Renewable Energy Laboratory (NREL): Standard biomass analytical procedures. http://www.nrel.gov/biomass/analytical_procedures.html webcite
- [28]Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F: Colorimetric methods for determination of sugars and related substances. Anal Chem 1956, 28:350-358.
- [29]Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D: Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 2007, 143:1871-1880.
- [30]Manfield IW, Bernal AJ, Moller I, McCartney I, Riess NP, Knox JP, Willats WGT: Re-engineering of the PAM1 phage display monoclonal antibody to produce a soluble, versatile anti-homogalacturonan scFv. Plant Sci 2005, 169:1090-1095.
- [31]Willats WG, Limberg G, Buchholt HC, van Alebeek GJ, Benen J, Christensen TM, Visser J, Voragen A, Mikkelsen JD, Knox JP: Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Res 2000, 327:309-320.