| Biotechnology for Biofuels | |
| Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii | |
| Daehwan Chung2  Minseok Cha2  Elise N. Snyder2  James G. Elkins1  Adam M. Guss1  Janet Westpheling2  | |
| [1] Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA | |
| [2] The BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, USA | |
| 关键词: Thermoanaerobacter pseudethanolicus 39E; Alcohol dehydrogenase; Caldicellulosiruptor bescii; Metabolic engineering; Cellulosic ethanol; | |
| Others : 1230613 DOI : 10.1186/s13068-015-0346-4 |
|
| received in 2015-07-23, accepted in 2015-09-21, 发布年份 2015 | |
【 摘 要 】
Background
The C. bescii genome does not encode an acetaldehyde/alcohol dehydrogenase or an acetaldehyde dehydrogenase and no ethanol production is detected in this strain. The recent introduction of an NADH-dependent AdhE from C. thermocellum (Fig. 1a) in an ldh mutant of this strain resulted in production of ethanol from un-pretreated switchgrass, but the thermolability of the C. thermocellum AdhE at the optimum growth temperature of C. bescii (78 °C) meant that ethanol was not produced above 65 °C.
Fig. 1. Proposed scheme for the pyruvate to ethanol pathway in C. thermocellum and T. pseudethanolicus 39E. a The C. thermocellum ethanol pathway. The red colored AdhE (Cthe_0423) is already expressed and tested in C. bescii[26]. b The T. pseudethanolicus 39E ethanol pathway. The green colored AdhE (Teth39_0206) and blue colored AdhB (Teth39_0218) are expressed and tested in C. bescii in this study
【 授权许可】
2015 Chung et al.
【 参考文献 】
- [1]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315(5813):804-807.
- [2]Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, et al.: How biotech can transform biofuels. Nat Biotechnol 2008, 26(2):169-172.
- [3]Solomon BD: Biofuels and sustainability. Ann N Y Acad Sci 2010, 1185:119-134.
- [4]Burdette D, Zeikus JG: Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2 degrees Adh) as a bifunctional alcohol dehydrogenase–acetyl-CoA reductive thioesterase. Biochem J 1994, 302(Pt 1):163-170.
- [5]Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA: Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 2009, 27(7):398-405.
- [6]Wiegel J: Ethanol from cellulose. Experientia 1982, 38(2):151-156.
- [7]Frock AD, Kelly RM: Extreme Thermophiles: moving beyond single-enzyme biocatalysis. Current Opin Chem Eng 2012, 1(4):363-372.
- [8]Olson DG, McBride JE, Shaw AJ, Lynd LR: Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23(3):396-405.
- [9]Olson DG, Sparling R, Lynd LR: Ethanol production by engineered thermophiles. Curr Opin Biotechnol 2015, 33C:130-141.
- [10]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev MMBR. 2002, 66(3):506-577.
- [11]Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM: Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 2013, 38(3):393-448.
- [12]Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM: Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 2008, 19(3):210-217.
- [13]Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR: Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 2012, 103(1):293-299.
- [14]Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR: Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol 2011, 92(3):641-652.
- [15]Rani KS, Swamy MV, Sunitha D, Haritha D, Seenayya G: Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J Microbiol Biotechnol 1996, 12(1):57-60.
- [16]Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez M Jr, et al.: Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA 2011, 108(33):13752-13757.
- [17]Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM: Elimination of hydrogenase active site assembly blocks H 2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 2015, 8:20. BioMed Central Full Text
- [18]Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, et al.: High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, 77(23):8288-8294.
- [19]Rydzak T, Lynd LR, Guss AM: Elimination of formate production in Clostridium thermocellum. J Ind Microbiol Biotechnol. 2015, 42(9):1263-1272.
- [20]Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, et al.: Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 2010, 76(19):6591-6599.
- [21]Biswas R, Prabhu S, Lynd LR, Guss AM: Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One 2014, 9(2):e86389.
- [22]Svetlichnyi VA, Svetlichnaya TP, Chernykh NA, Zavarzin GA: Anaerocellum Thermophilum Gen. Nov Sp. Nov. an extremely thermophilic cellulolytic Eubacterium isolated from hot-springs in the valley of Geysers. Microbiology 1990, 59(5):598-604.
- [23]Yang SJ, Kataeva I, Hamilton-Brehm SD, Engle NL, Tschaplinski TJ, Doeppke C, Davis M, Westpheling J, Adams MW: Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 2009, 75(14):4762-4769.
- [24]Yang SJ, Kataeva I, Wiegel J, Yin Y, Dam P, Xu Y, Westpheling J, Adams MW: Classification of ‘Anaerocellum thermophilum’ strain DSM 6725 as Caldicellulosiruptor bescii sp. nov. Int J Syst Evol Microbiol 2010, 60(Pt 9):2011-2015.
- [25]Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK: Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 2013, 128:751-759.
- [26]Chung D, Cha M, Guss AM, Westpheling J: Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci USA 2014, 111(24):8931-8936.
- [27]Chung D, Cha M, Farkas J, Westpheling J: Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus. PLoS One 2013, 8(5):e62881.
- [28]Chung D, Farkas J, Westpheling J: Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement. Biotechnol Biofuels 2013, 6(1):82. BioMed Central Full Text
- [29]Chung D, Young J, Bomble YJ, Vander Wall TA, Groom J, Himmel ME, Westpheling J: Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS One 2015, 10(3):e0119508.
- [30]Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R: Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H 2 and ethanol-producing bacteria. BMC Microbiol 2012, 12:295. BioMed Central Full Text
- [31]Kataeva IA, Yang SJ, Dam P, Poole FL 2nd, Yin Y, Zhou F, Chou WC, Xu Y, Goodwin L, Sims DR, et al.: Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 2009, 191(11):3760-3761.
- [32]Hemme CL, Fields MW, He Q, Deng Y, Lin L, Tu Q, Mouttaki H, Zhou A, Feng X, Zuo Z, et al.: Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields. Appl Environ Microbiol 2011, 77(22):7998-8008.
- [33]Lee Y-E, Jain MK, Lee C, Zeikus JG: Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 1993, 43(1):41-51.
- [34]Onyenwoke RU, Kevbrin VV, Lysenko AM, Wiegel J: Thermoanaerobacter pseudethanolicus sp. nov., a thermophilic heterotrophic anaerobe from Yellowstone National Park. Int J Syst Evol Microbiol 2007, 57(Pt 10):2191-2193.
- [35]Burdette DS, Vieille C, Zeikus JG: Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J 1996, 316(Pt 1):115-122.
- [36]Pei J, Zhou Q, Jiang Y, Le Y, Li H, Shao W, Wiegel J: Thermoanaerobacter spp. control ethanol pathway via transcriptional regulation and versatility of key enzymes. Metab Eng 2010, 12(5):420-428.
- [37]Basen M, Rhaesa AM, Kataeva I, Prybol CJ, Scott IM, Poole FL, Adams MW: Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol 2014, 152:384-392.
- [38]Lynd LR, Baskaran S, Casten S: Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 2001, 17(1):118-125.
- [39]Farkas J, Chung D, Cha M, Copeland J, Grayeski P, Westpheling J: Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 2013, 40(1):41-49.
- [40]Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D, Buchs J: Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 2011, 11:25. BioMed Central Full Text
- [41]Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J: Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng 2006, 95(3):433-445.
- [42]Kumar S, Wittmann C, Heinzle E: Minibioreactors. Biotechnol Lett 2004, 26(1):1-10.
- [43]Jensen PR, Hammer K: Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 1993, 59(12):4363-4366.
- [44]Neidhardt FC, Bloch PL, Smith DF: Culture medium for Enterobacteria. J Bacteriol 1974, 119(3):736-747.
- [45]van Niel EW, Claassen PA, Stams AJ: Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng 2003, 81(3):255-262.
- [46]Record MT Jr, Courtenay ES, Cayley DS, Guttman HJ: Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem Sci 1998, 23(4):143-148.
- [47]Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR: Cofactor Specificity of the bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015, 197(15):2610-2619.
- [48]Cha M, Wang H, Chung D, Bennetzen JL, Westpheling J: Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii. J Ind Microbiol Biotechnol 2013, 40(12):1443-1448.
- [49]Cha M, Chung D, Elkins JG, Guss AM, Westpheling J: Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol Biofuels 2013, 6(1):85. BioMed Central Full Text
- [50]Schut GJ, Adams MW: The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 2009, 191(13):4451-4457.
- [51]Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R: Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol 2012, 12:214. BioMed Central Full Text
- [52]Wang S, Huang H, Moll J, Thauer RK: NADP + reduction with reduced ferredoxin and NADP + reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 2010, 192(19):5115-5123.
- [53]Sambrook J, Russell D. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. 2001.
- [54]Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MW: Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J Biol Chem 2014, 289(5):2873-2879.