期刊论文详细信息
Biology of Sex Differences
Influence of ERβ selective agonism during the neonatal period on the sexual differentiation of the rat hypothalamic-pituitary-gonadal (HPG) axis
Heather B Patisaul1  Sandra M Losa-Ward1  Karina L Todd1  Katherine A McCaffrey1  Jillian A Mickens1 
[1] Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
关键词: kisspeptin;    estrogen;    sex differences;    development;    hypothalamus;   
Others  :  793824
DOI  :  10.1186/2042-6410-3-2
 received in 2011-10-11, accepted in 2012-01-19,  发布年份 2012
PDF
【 摘 要 】

Background

It is well established that sexual differentiation of the rodent hypothalamic-pituitary-gonadal (HPG) axis is principally orchestrated by estrogen during the perinatal period. Here we sought to better characterize the mechanistic role the beta form of the estrogen receptor (ERβ) plays in this process.

Methods

To achieve this, we exposed neonatal female rats to three doses (0.5, 1 and 2 mg/kg) of the ERβ selective agonist diarylpropionitrile (DPN) using estradiol benzoate (EB) as a positive control. Measures included day of vaginal opening, estrous cycle quality, GnRH and Fos co-localization following ovariectomy and hormone priming, circulating luteinizing hormone (LH) levels and quantification of hypothalamic kisspeptin immunoreactivity. A second set of females was then neonatally exposed to DPN, the ERα agonist propyl-pyrazole-triol (PPT), DPN+PPT, or EB to compare the impact of ERα and ERβ selective agonism on kisspeptin gene expression in pre- and post-pubescent females.

Results

All three DPN doses significantly advanced the day of vaginal opening and induced premature anestrus. GnRH and Fos co-labeling, a marker of GnRH activation, following ovariectomy and hormone priming was reduced by approximately half at all doses; the magnitude of which was not as large as with EB or what we have previously observed with the ERα agonist PPT. LH levels were also correspondingly lower, compared to control females. No impact of DPN was observed on the density of kisspeptin immunoreactive (-ir) fibers or cell bodies in the arcuate (ARC) nucleus, and kisspeptin-ir was only significantly reduced by the middle (1 mg/kg) DPN dose in the preoptic region. The second experiment revealed that EB, PPT and the combination of DPN+PPT significantly abrogated preoptic Kiss1 expression at both ages but ARC expression was only reduced by EB.

Conclusion

Our results indicate that selective agonism of ERβ is not sufficient to completely achieve male-typical HPG organization observed with EB or an ERα agonist.

【 授权许可】

   
2012 Patisaul et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705055539989.pdf 3990KB PDF download
Figure 5. 134KB Image download
Figure 4. 143KB Image download
Figure 3. 99KB Image download
Figure 2. 149KB Image download
Figure 1. 96KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Gorski RA, Mennin SP, Kubo K: The neural and hormonal bases of the reproductive cycle of the rat. Adv Exp Med Biol 1975, 54:115-153.
  • [2]Elkind-Hirsch K, King JC, Gerall AA, Arimura AA: The luteinizing hormone-releasing hormone (LHRH) system in normal and estrogenized neonatal rats. Brain Res Bull 1981, 7:645-654.
  • [3]Simerly RB: Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu Rev Neurosci 2002, 25:507-536.
  • [4]Bateman HL, Patisaul HB: Disrupted female reproductive physiology following neonatal exposure to phytoestrogens or estrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 2008, 29:988-997.
  • [5]Adewale HB, Jefferson WN, Newbold RR, Patisaul HB: Neonatal bisphenol-a exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin releasing hormone neurons. Biol Reprod 2009, 81:690-699.
  • [6]Simerly RB: Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav Brain Res 1998, 92:195-203.
  • [7]Kauffman AS, Clifton DK, Steiner RA: Emerging ideas about kisspeptin- GPR54 signaling in the neuroendocrine regulation of reproduction. Trends Neurosci 2007, 30:504-511.
  • [8]Smith JT, Clifton DK, Steiner RA: Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction 2006, 131:623-630.
  • [9]Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA: Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 2006, 26:6687-6694.
  • [10]Navarro VM, Fernandez-Fernandez R, Castellano JM, Roa J, Mayen A, Barreiro ML, Gaytan F, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M: Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol 2004, 561:379-386.
  • [11]Plant TM, Ramaswamy S: Kisspeptin and the regulation of the hypothalamic-pituitary-gonadal axis in the rhesus monkey (Macaca mulatta). Peptides 2009, 30:67-75.
  • [12]Ohkura S, Uenoyama Y, Yamada S, Homma T, Takase K, Inoue N, Maeda K, Tsukamura H: Physiological role of metastin/kisspeptin in regulating gonadotropin-releasing hormone (GnRH) secretion in female rats. Peptides 2009, 30:49-56.
  • [13]Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA: Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 2004, 80:264-272.
  • [14]Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M: The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001, 276:34631-34636.
  • [15]Lee DK, Nguyen T, O'Neill GP, Cheng R, Liu Y, Howard AD, Coulombe N, Tan CP, Tang-Nguyen AT, George SR, O'Dowd BF: Discovery of a receptor related to the galanin receptors. FEBS Lett 1999, 446:103-107.
  • [16]Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC: AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 2001, 276:28969-28975.
  • [17]de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E: Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003, 100:10972-10976.
  • [18]Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH: The GPR54 gene as a regulator of puberty. N Engl J Med 2003, 349:1614-1627.
  • [19]Kauffman AS: Sexual differentiation and the Kiss1 system: hormonal and developmental considerations. Peptides 2009, 30:83-93.
  • [20]Patisaul HB, Todd KL, Mickens JA, Adewale HB: Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 2009, 30:350-357.
  • [21]Clarkson J, Herbison AE: Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 2006, 147:5817-5825.
  • [22]Cao J, Patisaul HB: Sexually dimorphic expression of hypothalamic estrogen receptors alpha and beta and kiss1 in neonatal male and female rats. J Comp Neurol 2011, 519:2954-2977.
  • [23]Roa J, Vigo E, Castellano JM, Navarro VM, Fernandez-Fernandez R, Casanueva FF, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M: Hypothalamic expression of KiSS-1 system and gonadotropin-releasing effects of kisspeptin in different reproductive states of the female Rat. Endocrinology 2006, 147:2864-2878.
  • [24]Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA: A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004, 145:4073-4077.
  • [25]Clarkson J, d'Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE: Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008, 28:8691-8697.
  • [26]Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, Hoffman GE, Steiner RA, Tena-Sempere M: Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 2007, 148:1774-1783.
  • [27]Patisaul HB, Fortino AE, Polston EK: Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol 2006, 28:111-118.
  • [28]Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS: Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc Natl Acad Sci USA 1997, 94:14077-14082.
  • [29]Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M: Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 2010, 1364:129-138.
  • [30]Losa SM, Todd KL, Sullivan AW, Cao J, Mickens JA, Patisaul HB: Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod Toxicol 2011, 31:280-289.
  • [31]Kauffman AS: Gonadal and nongonadal regulation of sex differences in hypothalamic Kiss1 neurones. J Neuroendocrinol 2010, 22:682-691.
  • [32]Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA: Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem 2001, 44:4230-4251.
  • [33]Lund TD, Rovis T, Chung WC, Handa RJ: Novel actions of estrogen receptor-beta on anxiety-related behaviors. Endocrinology 2005, 146:797-807.
  • [34]Choleris E, Clipperton AE, Phan A, Kavaliers M: Estrogen receptor beta agonists in neurobehavioral investigations. Curr Opin Investig Drugs 2008, 9:760-773.
  • [35]Harris HA: Estrogen receptor-beta: recent lessons from in vivo studies. Mol Endocrinol 2007, 21:1-13.
  • [36]Donner N, Handa RJ: Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotonergic neurons of the rat dorsal raphe nuclei. Neuroscience 2009, 163:705-718.
  • [37]Boettger-Tong H, Murthy L, Chiappetta C, Kirkland JL, Goodwin B, Adlercreutz H, Stancel GM, Mäkelä S: A case of a laboratory animal feed with high estrogenic activity and its impact on in vivo responses to exogenously administered estrogens. Environ Health Perspect 1998, 106:369-373.
  • [38]Thigpen JE, Setchell KDR, Ahlmark KB, Locklear J, Spahr T, Caviness GF, Goelz MF, Haseman JK, Newbold RR, Forsythe DB: Phytoestrogen content of purified open- and closed-formula laboratory animal diets. Lab Anim Sci 1999, 49:530-536.
  • [39]Brown NM, Setchell KD: Animal models impacted by phytoestrogens in commercial chow: implications for pathways influenced by hormones. Lab Invest 2001, 81:735-747.
  • [40]Patisaul HB, Burke KT, Hinkle RE, Adewale HB, Shea D: Systemic administration of diarylpropionitrile (DPN) or phytoestrogens does not affect anxiety-related behaviors in gonadally intact male rats. Horm Behav 2009, 55:319-328.
  • [41]Frasor J, Barnett DH, Danes JM, Hess R, Parlow AF, Katzenellenbogen BS: Response-specific and ligand dose-dependent modulation of estrogen receptor (ER) alpha activity by ERbeta in the uterus. Endocrinology 2003, 144:3159-3166.
  • [42]Harris HA, Katzenellenbogen JA, Katzenellenbogen BS: Characterization of the biological roles of the estrogen receptors, ERalpha and ERbeta, in estrogen target tissues in vivo through the use of an ERalpha-selective ligand. Endocrinology 2002, 143:4172-4177.
  • [43]Walf AA, Rhodes ME, Frye CA: Antidepressant effects of ERbeta-selective estrogen receptor modulators in the forced swim test. Pharmacol Biochem Behav 2004, 78:523-529.
  • [44]Rhodes ME, Frye CA: ERbeta-selective SERMs produce mnemonic-enhancing effects in the inhibitory avoidance and water maze tasks. Neurobiol Learn Mem 2006, 85:183-191.
  • [45]Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, Herman JP, Marts S, Sadee W, Steiner M, Taylor J, Young E: Strategies and methods for research on sex differences in brain and behavior. Endocrinology 2005, 146:1650-1673.
  • [46]Wu TJ, Segal AZ, Miller GM, Gibson MJ, Silverman AJ: FOS expression in gonadotropin-releasing hormone neurons: enhancement by steroid treatment and mating. Endocrinology 1992, 131:2045-2050.
  • [47]Finn PD, Steiner RA, Clifton DK: Temporal patterns of gonadotropin-releasing hormone (GnRH), c-fos, and galanin gene expression in GnRH neurons relative to the luteinizing hormone surge in the rat. J Neurosci 1998, 18:713-719.
  • [48]Patisaul HB, Fortino AE, Polston EK: Sex differences in serotonergic but not gamma-aminobutyric acidergic (GABA) projections to the rat ventromedial nucleus of the hypothalamus. Endocrinology 2008, 149:397-408.
  • [49]Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A: Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 2006, 401:225-230.
  • [50]Lee WS, Smith MS, Hoffman GE: Luteinizing hormone-releasing hormone neurons express Fos protein during the proestrous surge of luteinizing hormone. Proc Natl Acad Sci USA 1990, 87:5163-5167.
  • [51]Wray S, Hoffman G: A developmental study of the quantitative distribution of LHRH neurons within the central nervous system of postnatal male and female rats. J Comp Neurol 1986, 252:522-531.
  • [52]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates. 4th edition. San Diego: Academic Press; 1998.
  • [53]Wray S, Gainer H: Effect of neonatal gonadectomy on the postnatal development of LHRH cell subtypes in male and female rats. Neuroendocrinology 1987, 45:413-419.
  • [54]Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda K: Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 2007, 53:367-378.
  • [55]Patisaul HB, Fortino AE, Polston EK: Sex differences in serotonergic but not {gamma}-aminobutyric acidergic (GABA) projections to the rat ventromedial nucleus of the hypothalamus. Endocrinology 2008, 149:397-408.
  • [56]Polston EK, Simerly RB: Sex-specific patterns of galanin, cholecystokinin, and substance P expression in neurons of the principal bed nucleus of the stria terminalis are differentially reflected within three efferent preoptic pathways in the juvenile rat. J Comp Neurol 2003, 465:551-559.
  • [57]Clarkson J, Boon WC, Simpson ER, Herbison AE: Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 2009, 150:3214-3220.
  • [58]Paxinos G, Watson C: The Rat Brain in Stereotaxic Coordinates: [the New Coronal Set]. 5th edition. London: Elsevier Academic; 2004.
  • [59]Patisaul HB, Whitten PL, Young L: Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17b-estradiol and the phytoestrogen, coumestrol. Brain Res Mol Brain Res 1999, 67:165-171.
  • [60]Kuhar MJ, De Souza EB, Unnerstall JR: Neurotransmitter receptor mapping by autoradiography and other methods. Annu Rev Neurosci 1986, 9:27-59.
  • [61]Patisaul HB, Scordalakes EM, Young LJ, Rissman EF: Oxytocin, but not oxytocin receptor, is regulated by oestrogen receptor beta in the female mouse hypothalamus. J Neuroendocrinol 2003, 15:787-793.
  • [62]Aihara M, Hayashi S: Induction of persistent diestrus followed by persistent estrus is indicative of delayed maturation of tonic gonadotropin-releasing systems in rats. Biol Reprod 1989, 40:96-101.
  • [63]Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M: Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005, 146:3917-3925.
  • [64]Castellano JM, Navarro VM, Fernandez-Fernandez R, Castano JP, Malagon MM, Aguilar E, Dieguez C, Magni P, Pinilla L, Tena-Sempere M: Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin-releasing hormone system of the rat. Mol Cell Endocrinol 2006, 257-258:75-83.
  • [65]Patchev AV, Gotz F, Rohde W: Differential role of estrogen receptor isoforms in sex-specific brain organization. FASEB J 2004, 18:1568-1570.
  • [66]Halliday GM, McCann H: The progression of pathology in Parkinson's disease. Ann N Y Acad Sci 2010, 1184:188-195.
  • [67]Herbison AE, Pape JR: New evidence for estrogen receptors in gonadotropin-releasing hormone neurons. Front Neuroendocrinol 2001, 22:292-308.
  • [68]Hrabovszky E, Shughrue PJ, Merchenthaler I, Hajszan T, Carpenter CD, Liposits Z, Petersen SL: Detection of estrogen receptor-beta messenger ribonucleic acid and 125I-estrogen binding sites in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 2000, 141:3506-3509.
  • [69]Hrabovszky E, Steinhauser A, Barabas K, Shughrue PJ, Petersen SL, Merchenthaler I, Liposits Z: Estrogen receptor-beta immunoreactivity in luteinizing hormone-releasing hormone neurons of the rat brain. Endocrinology 2001, 142:3261-3264.
  • [70]Foradori CD, Hinds LR, Hanneman WH, Handa RJ: Effects of atrazine and its withdrawal on gonadotropin-releasing hormone neuroendocrine function in the adult female Wistar rat. Biol Reprod 2009, 81:1099-1105.
  • [71]Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA: Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005, 146:3686-3692.
  • [72]McCarthy MM, Wright CL, Schwarz JM: New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior. Horm Behav 2009, 55:655-665.
  • [73]Pettersson K, Grandien K, Kuiper GG, Gustafsson JA: Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Molecular Endocrinology 1997, 11:1486-1496.
  • [74]Matthews J, Gustafsson JA: Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv 2003, 3:281-292.
  • [75]Rissman EF: Roles of oestrogen receptors alpha and beta in behavioural neuroendocrinology: beyond Yin/Yang. J Neuroendocrinol 2008, 20:873-879.
  • [76]Vandenberg LN, Wadia PR, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM: The mammary gland response to estradiol: monotonic at the cellular level, non-monotonic at the tissue-level of organization? J Steroid Biochem Mol Biol 2006, 101:263-274.
  • [77]vom Saal FS, Timms BG, Montano MM, Palanza P, Thayer KA, Nagel SC, Dhar MD, Ganjam VK, Parmigiani S, Welshons WV: Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilbestrol and opposite effects at high doses. Proc Natl Acad Sci USA 1997, 94:2056-2061.
  • [78]Welshons WV, Thayer KA, Judy BM, Taylor JA, Curran EM, vom Saal FS: Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environ Health Perspect 2003, 111:994-1006.
  • [79]Shughrue P, Merchenthaler I: Distribution of estrogen receptor beta immunoreactivity in the rat central nervous system. J Comp Neurol 2001, 436:64-81.
  • [80]Simerly RB, Chang C, Muramatsu M, Swanson LW: Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 1990, 294:76-95.
  • [81]Yeo SH, Herbison AE: Projections of arcuate nucleus and rostral periventricular kisspeptin neurons in the adult female mouse brain. Endocrinology 2011, 152:2387-2399.
  • [82]Levin ER: Membrane oestrogen receptor alpha signalling to cell functions. J Physiol 2009, 587:5019-5023.
  • [83]Micevych P, Kuo J, Christensen A: Physiology of membrane oestrogen receptor signalling in reproduction. J Neuroendocrinol 2009, 21:249-256.
  文献评价指标  
  下载次数:34次 浏览次数:17次