期刊论文详细信息
BMC Bioinformatics
iMir: An integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq
Giorgio Giurato2  Maria Rosaria De Filippo3  Antonio Rinaldi2  Adnan Hashim2  Giovanni Nassa2  Maria Ravo2  Francesca Rizzo2  Roberta Tarallo2  Alessandro Weisz1 
[1] Division of Molecular Pathology and Medical Genomics, “SS. Giovanni di Dio e Ruggi d’Aragona – Schola Medica Salernitana” University of Salerno Hospital, Salerno, Italy
[2] Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
[3] Fondazione IRCCS SDN, Napoli, Italy
关键词: Piwi-interacting RNA;    microRNA;    Small non-coding RNA;    Breast cancer;    Data analysis pipeline;    SmallRNA-Seq;    Next generation sequencing;   
Others  :  1087676
DOI  :  10.1186/1471-2105-14-362
 received in 2013-09-17, accepted in 2013-12-10,  发布年份 2013
PDF
【 摘 要 】

Background

Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once.

Results

We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed miRNAs. In addition, iMir allowed also the identification of ~70 piRNAs (piwi-interacting RNAs), some of which differentially expressed in proliferating vs growth arrested cells.

Conclusion

The integrated data analysis pipeline described here is based on a reliable, flexible and fully automated workflow, useful to rapidly and efficiently analyze high-throughput smallRNA-Seq data, such as those produced by the most recent high-performance next generation sequencers. iMir is available at http://www.labmedmolge.unisa.it/inglese/research/imir webcite.

【 授权许可】

   
2013 Giurato et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150117031127401.pdf 1186KB PDF download
Figure 3. 170KB Image download
Figure 2. 73KB Image download
Figure 1. 93KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [2]He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7):522-531.
  • [3]Flynt AS, Lai EC: Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 2008, 9(11):831-842.
  • [4]Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, et al.: Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 2007, 179(8):5082-5089.
  • [5]Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, et al.: MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 2008, 26(1):17-29.
  • [6]Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T: Identification of novel genes coding for small expressed RNAs. Science 2001, 294(5543):853-858.
  • [7]Lau NC, Lim LP, Weinstein EG, Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001, 294(5543):858-862.
  • [8]Lee RC, Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294(5543):862-864.
  • [9]Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW: Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2006, 442(7098):82-85.
  • [10]Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P: Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309(5740):1577-1581.
  • [11]Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, et al.: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 2008, 10(2):202-210.
  • [12]Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, et al.: miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 2008, 6:14. BioMed Central Full Text
  • [13]Paris O, Ferraro L, Grober OMV, Ravo M, De Filippo MR, Giurato G, Nassa G, Tarallo R, Cantarella C, Rizzo F, et al.: Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 2012, 31(38):4196-4206.
  • [14]Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23(20):4051-4060.
  • [15]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, et al.: The nuclear Rnase III Drosha initiates microRNA processing. Nature 2003, 425(6956):415-419.
  • [16]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science 2004, 303(5654):95-98.
  • [17]Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD: A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001, 293(5531):834-838.
  • [18]Nilsen TW: Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 2007, 23(5):243-249.
  • [19]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
  • [20]Zamore PD, Haley B: Ribo-gnome: the big world of small RNAs. Science 2005, 309(5740):1519-1524.
  • [21]Luteijn MJ, Ketting RF: PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 2013, 14(8):523-534.
  • [22]Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H, Li QN: piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 2011, 412(17–18):1621-1625.
  • [23]Isakov O, Ronen R, Kovarsky J, Gabay A, Gan I, Modai S, Shomron N: Novel nsight into the non-coding reperto ire through deep sequencing analysis. Nucleic Acids Res 2012, 10:1093.
  • [24]Gupta V, Markmann K, Pedersen CN, Stougaard J, Andersen SU: shortran: a pipeline for small RNA-seq data analysis. Bioinformatics 2012, 28(20):2698-2700.
  • [25]Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V: The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 2012, 28(15):2059-2061.
  • [26]Huang PJ, Liu YC, Lee CC, Lin WC, Gan RR, Lyu PC, Tang P: DSAP: deep-sequencing small RNA analysis pipeline. Nucleic Acids Res 2010, 38:W385-W391. Web Server issue
  • [27]Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q: mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 2013, 10(7):1087-1092.
  • [28]Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS: miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC bioinformatics 2009, 10:328. BioMed Central Full Text
  • [29]Cordero F, Beccuti M, Arigoni M, Donatelli S, Calogero RA: Optimizing a massive parallel sequencing workflow for quantitative miRNA expression analysis. PLoS One 2012, 7(2):e31630.
  • [30]Williamson V, Kim A, Xie B, McMichael GO, Gao Y, Vladimirov V: Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation. Brief Bioinform 2013, 14(1):36-45.
  • [31]Martin M: Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal 2011, 17:1.
  • [32]Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM: miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res 2011, 39:W132-W138. Web Server issue
  • [33]Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008, 18(4):610-621.
  • [34]Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N: miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 2012, 40(1):37-52.
  • [35]Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD: Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 2012, 151(5):1055-1067.
  • [36]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [37]Garmire LX, Subramaniam S: Evaluation of normalization methods in mammalian microRNA-Seq data. RNA 2012, 18(6):1279-1288.
  • [38]Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 2010, 11(8):R90. BioMed Central Full Text
  • [39]Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36:D149-D153. Database issue
  • [40]Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15-20.
  • [41]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27(1):91-105.
  • [42]Cicatiello L, Mutarelli M, Grober OM, Paris O, Ferraro L, Ravo M, Tarallo R, Luo S, Schroth GP, et al.: Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. Am J Pathol 2010, 176(5):2113-2130.
  • [43]Ferraro L, Ravo M, Nassa G, Tarallo R, De Filippo MR, Giurato G, Cirillo F, Stellato C, Silvestro S, Cantarella C, et al.: Effects of estrogen on microRNA expression in hormone-responsive breast cancer cells. Horm Cancer 2011, 2(5):610-621.
  • [44]Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A: Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 2013, 41:D226-D232. Database issue
  • [45]Esposito T, Magliocca S, Formicola D, Gianfrancesco F: piR_015520 belongs to Piwi-associated RNAs regulates expression of the human melatonin receptor 1A gene. PLoS One 2011, 6(7):e22727.
  • [46]Huang G, Hu H, Xue X, Shen S, Gao E, Guo G, Shen X, Zhang X: Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 2012. [Epub ahead of print]
  • [47]Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Tuschl T: A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006, 442(7099):203-207.
  • [48]Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z, Guo J: piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 2012, 315(1):12-17.
  • [49]Huang G, Hu H, Xue X, Shen S, Gao E, Guo G, Shen X, Zhang X: Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 2013, 15(7):563-568.
  • [50]Law PT, Qin H, Ching AK, Lai KP, Co NN, He M, Lung RW, Chan AW, Chan TF, Wong N: Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol 2013, 58(6):1165-1173.
  • [51]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39:D152-D157. Database issue
  • [52]Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34:D140-D144. Database issue)
  • [53]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-D158. Database issue
  • [54]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19(1):92-105.
  文献评价指标  
  下载次数:17次 浏览次数:9次