期刊论文详细信息
BMC Medical Genomics
Biomarker discovery: quantification of microRNAs and other small non-coding RNAs using next generation sequencing
Carl Ernst1  Gustavo Turecki1  Vladimir Benes3  Jiannis Ragoussis4  Joelle Fontaine4  Isabelle Guillet4  Sylvie Laboissiere4  Laura M. Fiori2  Cristiana Cruceanu1  Alpha Diallo2  Juan Pablo Lopez1 
[1]Department of Human Genetics, McGill University, Montreal, QC, Canada
[2]McGill Group for Suicide Studies (MGSS), Douglas Mental Health University Institute, McGill University, Frank B Common Pavilion, Room F-2101.2, 6875 LaSalle Boulevard, Montreal H4H 1R3, QC, Canada
[3]European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
[4]McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
关键词: Clinical samples;    Liver;    Heart;    Brain;    Whole-blood;    Small RNA sequencing;    Next-generation sequencing;    Small non-coding RNA;    microRNA;    Biomarker;   
Others  :  1219424
DOI  :  10.1186/s12920-015-0109-x
 received in 2015-03-16, accepted in 2015-06-16,  发布年份 2015
PDF
【 摘 要 】

Background

Small ncRNAs (sncRNAs) offer great hope as biomarkers of disease and response to treatment. This has been highlighted in the context of several medical conditions such as cancer, liver disease, cardiovascular disease, and central nervous system disorders, among many others. Here we assessed several steps involved in the development of an ncRNA biomarker discovery pipeline, ranging from sample preparation to bioinformatic processing of small RNA sequencing data.

Methods

A total of 45 biological samples were included in the present study. All libraries were prepared using the Illumina TruSeq Small RNA protocol and sequenced using the HiSeq2500 or MiSeq Illumina sequencers. Small RNA sequencing data was validated using qRT-PCR. At each stage, we evaluated the pros and cons of different techniques that may be suitable for different experimental designs. Evaluation methods included quality of data output in relation to hands-on laboratory time, cost, and efficiency of processing.

Results

Our results show that good quality sequencing libraries can be prepared from small amounts of total RNA and that varying degradation levels in the samples do not have a significant effect on the overall quantification of sncRNAs via NGS. In addition, we describe the strengths and limitations of three commercially available library preparation methods: (1) Novex TBE PAGE gel; (2) Pippin Prep automated gel system; and (3) AMPure XP beads. We describe our bioinformatics pipeline, provide recommendations for sequencing coverage, and describe in detail the expression and distribution of all sncRNAs in four human tissues: whole-blood, brain, heart and liver.

Conclusions

Ultimately this study provides tools and outcome metrics that will aid researchers and clinicians in choosing an appropriate and effective high-throughput sequencing quantification method for various study designs, and overall generating valuable information that can contribute to our understanding of small ncRNAs as potential biomarkers and mediators of biological functions and disease.

【 授权许可】

   
2015 Lopez et al.

【 预 览 】
附件列表
Files Size Format View
20150717021849936.pdf 1716KB PDF download
Fig. 7. 64KB Image download
Fig. 6. 96KB Image download
Fig. 5. 63KB Image download
Fig. 4. 65KB Image download
Fig. 3. 53KB Image download
Fig. 2. 59KB Image download
Fig. 1. 73KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Hampel H, Frank R, Broich K, Teipel SJ, Katz RG, Hardy J, et al.: Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 2010, 9(7):560-74.
  • [2]Shaw LM, Korecka M, Clark CM, Lee VM, Trojanowski JQ: Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 2007, 6(4):295-303.
  • [3]Davis J, Maes M, Andreazza A, McGrath JJ, Tye SJ, Berk M: Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol Psychiatry 2014.
  • [4]Strimbu K, Tavel JA: What are biomarkers? Curr Opin HIV AIDS 2010, 5(6):463-6.
  • [5]Liu Z, Que S, Xu J, Peng T: Alanine aminotransferase-old biomarker and new concept: a review. Int J Med Sci 2014, 11(9):925-35.
  • [6]de Blacam C, Byrne C, Hughes E, McIlroy M, Bane F, Hill AD, et al.: HOXC11-SRC-1 regulation of S100beta in cutaneous melanoma: new targets for the kinase inhibitor dasatinib. Br J Cancer 2011, 105(1):118-23.
  • [7]Helleday T, Eshtad S, Nik-Zainal S: Mechanisms underlying mutational signatures in human cancers. Nat Rev Genet 2014, 15(9):585-98.
  • [8]Kandimalla R, van Tilborg AA, Zwarthoff EC: DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol 2013, 10(6):327-35.
  • [9]Ordovas JM, Smith CE: Epigenetics and cardiovascular disease. Nat Rev Cardiol 2010, 7(9):510-9.
  • [10]Warton K, Samimi G: Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci 2015, 2:13.
  • [11]Schubeler D: Function and information content of DNA methylation. Nature 2015, 517(7534):321-6.
  • [12]Calin GA, Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer 2006, 6(11):857-66.
  • [13]Szabo G, Bala S: MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol 2013, 10(9):542-52.
  • [14]Flemming A: Heart failure: targeting miRNA pathology in heart disease. Nat Rev Drug Discov 2014, 13(5):336.
  • [15]Lopez JP, Fiori LM, Gross JA, Labonte B, Yerko V, Mechawar N, et al.: Regulatory role of miRNAs in polyamine gene expression in the prefrontal cortex of depressed suicide completers. Int J Neuropsychopharmacol 2014, 17(1):23-32.
  • [16]Lopez JP, Lim R, Cruceanu C, Crapper L, Fasano C, Labonte B, et al.: miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med 2014, 20(7):764-8.
  • [17]Maffioletti E, Tardito D, Gennarelli M, Bocchio-Chiavetto L: Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Front Cell Neurosci 2014, 8:75.
  • [18]O’Connor RM, Dinan TG, Cryan JF: Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 2012, 17(4):359-76.
  • [19]Esteller M: Non-coding RNAs in human disease. Nat Rev Genet 2011, 12(12):861-74.
  • [20]Li Z, Rana TM: Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 2014, 13(8):622-38.
  • [21]Qureshi IA, Mehler MF: Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012, 13(8):528-41.
  • [22]Rukov JL, Vinther J, Shomron N: Pharmacogenomics genes show varying perceptibility to microRNA regulation. Pharmacogenet Genomics 2011, 21(5):251-62.
  • [23]Ha M, Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014, 15(8):509-24.
  • [24]Hu W, Coller J: What comes first: translational repression or mRNA degradation? The deepening mystery of microRNA function. Cell Res 2012, 22(9):1322-4.
  • [25]Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS: Non-coding RNAs: regulators of disease. J Pathol 2010, 220(2):126-39.
  • [26]Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ: Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 2007, 316(5825):744-7.
  • [27]Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, et al.: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007, 128(6):1089-103.
  • [28]Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K, et al.: MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 2010, 24(9):887-92.
  • [29]Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M, et al.: Identification of novel piRNAs in bladder cancer. Cancer Lett 2015, 356(2 Pt B):561-7.
  • [30]Zhang H, Ren Y, Xu H, Pang D, Duan C, Liu C: The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 2013, 22(4):217-23.
  • [31]Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, et al.: Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 2011, 44(13):1050-7.
  • [32]Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T: Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 1996, 85(7):1077-88.
  • [33]King TH, Liu B, McCully RR, Fournier MJ: Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 2003, 11(2):425-35.
  • [34]Thorenoor N, Slaby O: Small nucleolar RNAs functioning and potential roles in cancer. Tumour Biol 2015, 36(1):41-53.
  • [35]Martens-Uzunova ES, Olvedy M, Jenster G: Beyond microRNA--novel RNAs derived from small non-coding RNA and their implication in cancer. Cancer Lett 2013, 340(2):201-11.
  • [36]Mannoor K, Liao J, Jiang F: Small nucleolar RNAs in cancer. Biochim Biophys Acta 2012, 1826(1):121-8.
  • [37]Yarmishyn AA, Kurochkin IV: Long noncoding RNAs: a potential novel class of cancer biomarkers. Front Genet 2015, 6:145.
  • [38]Duggirala A, Delogu F, Angelini TG, Smith T, Caputo M, Rajakaruna C, et al.: Non coding RNAs in aortic aneurysmal disease. Front Genet 2015, 6:125.
  • [39]Jin K, Luo G, Xiao Z, Liu Z, Liu C, Ji S, et al.: Noncoding RNAs as potential biomarkers to predict the outcome in pancreatic cancer. Drug Des Dev Ther 2015, 9:1247-55.
  • [40]Zhang W, Ren SC, Shi XL, Liu YW, Zhu YS, Jing TL, et al.: A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing prostate biopsy. Prostate 2015, 75(6):653-61.
  • [41]Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464(7291):1071-6.
  • [42]Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al.: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458(7235):223-7.
  • [43]Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, et al.: Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 2007, 12(3):215-29.
  • [44]Sana J, Hankeova S, Svoboda M, Kiss I, Vyzula R, Slaby O: Expression levels of transcribed ultraconserved regions uc.73 and uc.388 are altered in colorectal cancer. Oncology 2012, 82(2):114-8.
  • [45]Berezikov E: Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 2011, 12(12):846-60.
  • [46]van Rooij E: The art of microRNA research. Circ Res 2011, 108(2):219-34.
  • [47]Pritchard CC, Cheng HH, Tewari M: MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012, 13(5):358-69.
  • [48]Weiland M, Gao XH, Zhou L, Mi QS: Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol 2012, 9(6):850-9.
  • [49]De Guire V, Robitaille R, Tetreault N, Guerin R, Menard C, Bambace N, et al.: Circulating miRNAs as sensitive and specific biomarkers for the diagnosis and monitoring of human diseases: promises and challenges. Clin Biochem 2013, 46(10–11):846-60.
  • [50]Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, et al.: Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 2013, 14:319. BioMed Central Full Text
  • [51]Spornraft M, Kirchner B, Haase B, Benes V, Pfaffl MW, Riedmaier I: Optimization of extraction of circulating RNAs from plasma--enabling small RNA sequencing. PLoS One 2014., 9(9) Article ID e107259
  • [52]Illumina. Illumina CASAVA 1.8 http://support.illumina.com/content/dam/illumina-support/documents/myillumina/33d66b02-53b5-4f4d-9d8b-f94237c7e44d/casava_qrg_15011197b.pdf. 2011.
  • [53]Gordon A. FASTX-toolkit. Computer program distributed by the author, website http://hannonlab.cshl.edu/fastx_toolkit/index.html [accessed 2014–2015]
  • [54]Song L, Florea L, Langmead B: Lighter: fast and memory-efficient sequencing error correction without counting. Genome Biol 2014, 15(11):509. BioMed Central Full Text
  • [55]Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al.: The human genome browser at UCSC. Genome Res 2002, 12(6):996-1006.
  • [56]Chen CJ, Servant N, Toedling J, Sarazin A, Marchais A, Duvernois-Berthet E, et al.: ncPRO-seq: a tool for annotation and profiling of ncRNAs in sRNA-seq data. Bioinformatics 2012, 28(23):3147-9.
  • [57]Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011, 39(Database issue):D152-7.
  • [58]Kozomara A, Griffiths-Jones S: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014, 42(Database issue):D68-73.
  • [59]Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, et al.: Rfam: updates to the RNA families database. Nucleic Acids Res 2009, 37(Database issue):D136-40.
  • [60]Sai Lakshmi S, Agrawal S: piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 2008, 36(Database issue):D173-7.
  • [61]Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15(12):550. BioMed Central Full Text
  • [62]Camps C, Saini HK, Mole DR, Choudhry H, Reczko M, Guerra-Assuncao JA, et al.: Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer 2014, 13:28. BioMed Central Full Text
  • [63]van de Bunt M, Gaulton KJ, Parts L, Moran I, Johnson PR, Lindgren CM, et al.: The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis. PLoS One 2013., 8(1) Article ID e55272
  • [64]Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, et al.: Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem 2010, 56(6):998-1006.
  • [65]Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, et al.: Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res 2011, 39(13):5692-703.
  • [66]Zhang Z, Qin YW, Brewer G, Jing Q: MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip Rev RNA 2012, 3(4):593-600.
  • [67]Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, et al.: Differential regulation of microRNA stability. RNA 2010, 16(5):1032-9.
  • [68]Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ: Structure of the guide-strand-containing argonaute silencing complex. Nature 2008, 456(7219):209-13.
  • [69]Nagy C MM, Lopez JP, Vaillancourt K, Cruceanu C, Gross J, Arnovitz M, Mechawar N, Turecki G. The effects of post-mortem interval on biomolecule integrity in the brain. J Neuropath Exp Neur. 2015;In Press.
  • [70]Fiedler J, Thum T: MicroRNAs in myocardial infarction. Arterioscler Thromb Vasc Biol 2013, 33(2):201-5.
  • [71]Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H, et al.: Plasma microRNA-122 as a biomarker for viral-, alcohol-, and chemical-related hepatic diseases. Clin Chem 2010, 56(12):1830-8.
  • [72]Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al.: The microRNA spectrum in 12 body fluids. Clin Chem 2010, 56(11):1733-41.
  文献评价指标  
  下载次数:74次 浏览次数:28次