期刊论文详细信息
BMC Cancer
Effects on human transcriptome of mutated BRCA1 BRCT domain: A microarray study
Silvia Pellegrini1  Maria Adelaide Caligo2  Lucia Guidugli3  Chiara Guglielmi2  Veronica Mariotti1  Erika Melissari1  Caterina Iofrida1 
[1]Department of Experimental Pathology, Medical Biotechnology, Epidemiology and Infectious Diseases, University of Pisa, 56126, Pisa, Italy
[2]Section of Genetic Oncology Division of Surgical, Molecular and Ultrastructural Pathology, Department of Oncology, University of Pisa and Pisa University Hospital, 56126, Pisa, Italy
[3]Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
关键词: Apoptosis;    Breast neoplasms;    Cell proliferation;    Genomic instability;    DNA repair;    DNA damage;    BRCA1 gene;    Missense mutations;    Microarray analysis;    Gene expression;   
Others  :  1080400
DOI  :  10.1186/1471-2407-12-207
 received in 2012-01-05, accepted in 2012-05-08,  发布年份 2012
PDF
【 摘 要 】

Background

BRCA1 (breast cancer 1, early onset) missense mutations have been detected in familial breast and ovarian cancers, but the role of these variants in cancer predisposition is often difficult to ascertain. In this work, the molecular mechanisms affected in human cells by two BRCA1 missense variants, M1775R and A1789T, both located in the second BRCT (BRCA1 C Terminus) domain, have been investigated. Both these variants were isolated from familial breast cancer patients and the study of their effect on yeast cell transcriptome has previously provided interesting clues to their possible role in the pathogenesis of breast cancer.

Methods

We compared by Human Whole Genome Microarrays the expression profiles of HeLa cells transfected with one or the other variant and HeLa cells transfected with BRCA1 wild-type. Microarray data analysis was performed by three comparisons: M1775R versus wild-type (M1775RvsWT-contrast), A1789T versus wild-type (A1789TvsWT-contrast) and the mutated BRCT domain versus wild-type (MutvsWT-contrast), considering the two variants as a single mutation of BRCT domain.

Results

201 differentially expressed genes were found in M1775RvsWT-contrast, 313 in A1789TvsWT-contrast and 173 in MutvsWT-contrast. Most of these genes mapped in pathways deregulated in cancer, such as cell cycle progression and DNA damage response and repair.

Conclusions

Our results represent the first molecular evidence of the pathogenetic role of M1775R, already proposed by functional studies, and give support to a similar role for A1789T that we first hypothesized based on the yeast cell experiments. This is in line with the very recently suggested role of BRCT domain as the main effector of BRCA1 tumor suppressor activity.

【 授权许可】

   
2012 Iofrida et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141203003811361.pdf 1478KB PDF download
Figure 5. 229KB Image download
Figure 4. 60KB Image download
Figure 3. 92KB Image download
Figure 2. 56KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Fabbro M, Savage K, Hobson K, Deans AJ, Powell SN, McArthur GA, Khanna KK: BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 2004, 279:31251-31258.
  • [2]Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN: The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene 1999, 18:263-268.
  • [3]Ouchi T: BRCA1 phosphorylation: biological consequences. Cancer Biol Ther 2006, 5:470-475.
  • [4]Chen L, Nievera CJ, Lee AY, Wu X: Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem 2008, 283:7713-7720.
  • [5]Baer R, Ludwig T: The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Curr Opin Genet Dev 2002, 12:86-91.
  • [6]Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N, Nederlof PM, Gage FH, Verma IM: BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 2011, 477:179-184.
  • [7]Linger RJ, Kruk PA: BRCA1 16 years later: risk-associated BRCA1 mutations and their functional implications. FEBS J 2010, 277:3086-3096.
  • [8]Callebaut I, Mornon JP: From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett 1997, 400:25-30.
  • [9]Rodriguez M, Yu X, Chen J, Songyang Z: Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 2003, 278:52914-52918.
  • [10]Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin CS, deRooij DG, Hirsch S, Ravi K, Hicks JB, Szabolcs M, Jasin M, Baer R, Ludwig T: BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 2011, 334:525-528.
  • [11]Di Cecco L, Melissari E, Mariotti V, Iofrida C, Galli A, Guidugli L, Lombardi G, Caligo MA, Iacopetti P, Pellegrini S: Characterisation of gene expression profiles of yeast cells expressing BRCA1 missense variants. Eur J Cancer 2009, 45:2187-2196.
  • [12]Guidugli L, Rugani C, Lombardi G, Aretini P, Galli A, Caligo MA: A recombination-based method to characterize human BRCA1 missense variants. Breast Cancer Res Treat 2011, 125:265-272.
  • [13]Olopade OI, Fackenthal JD, Dunston G, Tainsky MA, Collins F, Whitfield-Broome C: Breast cancer genetics in African Americans. Cancer 2003, 97(Suppl 1):236-245.
  • [14]Caligo MA, Bonatti F, Guidugli L, Aretini P, Galli A: A yeast recombination assay to characterize human BRCA1 missense variants of unknown pathological significance. Hum Mutat 2009, 30:123-133.
  • [15]Smyth G: Linear models for microarray data. In Bioinformatics and computational biology solutions using R and Bioconductor. Edited by Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W. New York: Springer; 2005:397-420.
  • [16]Lonnstedt I, Speed T: Replicated microarray data. Stat Sinica 2002, 12:31-46.
  • [17]Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, Georgescu C, Romero R: A systems biology approach for pathway level analysis. Genome Res 2007, 17:1537-1545.
  • [18]Pathway-Express. http://vortex.cs.wayne.edu/projects.htm webcite
  • [19]Khatri P, Draghici S, Ostermeier GC, Krawetz SA: Profiling gene expression using onto-express. Genomics 2002, 79:266-270.
  • [20]Onto-Express. [http://vortex.cs.wayne.edu/projects.htm webcite]
  • [21]Coremine. [http://www.coremine.com/medical webcite]
  • [22]Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT: The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009, 55:611-622.
  • [23]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:research0034.1-research0034.11. BioMed Central Full Text
  • [24]ArrayExpress. [http://www.ebi.ac.uk/arrayexpress/ webcite]
  • [25]Strobl J, Wonderlin W, Flynn D: Mitogenic signal transduction in human breast cancer cells. Gen Pharmacol 1995, 26:1643-1649.
  • [26]Vermeulen K, Van Bockstaele DR, Berneman ZN: The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003, 36:131-149.
  • [27]Zafonte BT, Hulit J, Amanatullah DF, Albanese C, Wang C, Rosen E, Reutens A, Sparano JA, Lisanti MP, Pestell RG: Cell-cycle dysregulation in breast cancer: breast cancer therapies targeting the cell cycle. Front Biosci 2000, 5:D938-961.
  • [28]Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E: Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 2010, 704:12-20.
  • [29]Harris TE, Albrecht JH, Nakanishi M, Darlington GJ: CCAAT/enhancer-binding protein-alpha cooperates with p21 to inhibit cyclin-dependent kinase-2 activity and induces growth arrest independent of DNA binding. J Biol Chem 2001, 276:29200-29209.
  • [30]Pardali K, Kowanetz M, Heldin CH, Moustakas A: Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J Cell Physiol 2005, 204:260-272.
  • [31]Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB: Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003, 63:8284-8292.
  • [32]Kohn EA, Du Z, Sato M, Van Schyndle CM, Welsh MA, Yang YA, Stuelten CH, Tang B, Ju W, Bottinger EP, Wakefield LM: A novel approach for the generation of genetically modified mammary epithelial cell cultures yields new insights into TGFβ signaling in the mammary gland. Breast Cancer Res 2010, 12:R83. BioMed Central Full Text
  • [33]Huang SM, Lu KT, Wang YC: ATM/ATR and SMAD3 pathways contribute to 3-indole-induced G1 arrest in cancer cells and xenograft models. Anticancer Res 2011, 31:203-208.
  • [34]Zelivianski S, Cooley A, Kall R, Jeruss JS: Cyclin-dependent kinase 4-mediated phosphorylation inhibits Smad3 activity in cyclin d-overexpressing breast cancer cells. Mol Cancer Res 2010, 8:1375-1387.
  • [35]Li H, Sekine M, Seng S, Avraham S, Avraham HK: BRCA1 interacts with Smad3 and regulates Smad3-mediated TGF-beta signaling during oxidative stress responses. PLoS One 2009, 4:e7091.
  • [36]Carbone R, Pearson M, Minucci S, Pelicci PG: PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 2002, 21:1633-1640.
  • [37]Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y: Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 2000, 102:463-473.
  • [38]Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS, Lee YH, Song KS, Hwang HM, Na YS, Yang Y, Lee KN, Choi I: VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression. Oncogene 2003, 22:4035-4046.
  • [39]Burbee D, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 2001, 93:691-699.
  • [40]Shivakumar L, Minna J, Sakamaki T, Pestell R, White M: The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 2002, 22:4309-4318.
  • [41]Shaulian E, Karin M: AP-1 in cell proliferation and survival. Oncogene 2001, 20:2390-2400.
  • [42]Nunes-Xavier C, Romá-Mateo C, Ríos P, Tárrega C, Cejudo-Marín R, Tabernero L, Pulido R: Dual-Specificity MAP Kinase Phosphatases as Targets of Cancer Treatment. Anticancer Agents Med Chem 2011, 11:109-132.
  • [43]Small GW, Shi YY, Edmund NA, Somasundaram S, Moore DT, Orlowski RZ: Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Mol Pharmacol 2004, 66:1478-1490.
  • [44]Wang HY, Cheng Z, Malbon CC: Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett 2003, 191:229-237.
  • [45]Givant-Horwitz V, Davidson B, Goderstad JM, Nesland JM, Tropé CG, Reich R: The PAC-1 dual specificity phosphatase predicts poor outcome in serous ovarian carcinoma. Gynecol Oncol 2004, 93:517-523.
  • [46]Bagnato A, Rosanò L: The endothelin axis in cancer. Int J Biochem Cell Biol 2008, 40:1443-1451.
  • [47]Bassermann F, Pagano M: Dissecting the role of ubiquitylation in the DNA damage response checkpoint in G2. Cell Death Differ 2010, 17:78-85.
  • [48]Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I, Yates JR, Tagaya M, Cleveland DW: ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 2005, 169:49-60.
  • [49]Xu L, Begum S, Hearn JD, Hynes RO: GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A 2006, 103:9023-9028.
  • [50]Shishodia S, Aggarwal BB: Nuclear factor-kappaB: a friend or a foe in cancer? Biochem Pharmacol 2004, 68:1071-1080.
  • [51]Rayet B, Gélinas C: Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999, 18(49):6938-6947.
  • [52]Kühnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M, Kubicka S: NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem 2000, 275:6421-6427.
  • [53]Shetty S, Graham BA, Brown JG, Hu X, Vegh-Yarema N, Harding G, Paul JT, Gibson SB: Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 2005, 25:5404-5416.
  • [54]Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A: Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997, 277:818-821.
  • [55]Suliman A, Lam A, Datta R, Srivastava RK: Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 2001, 20:2122-2133.
  • [56]Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K: DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 2007, 25:725-738.
  • [57]Chen W, Li N, Chen T, Han Y, Li C, Wang Y, He W, Zhang L, Wan T, Cao X: The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J Biol Chem 2005, 280:40985-40995.
  • [58]Li N, Zheng Y, Chen W, Wang C, Liu X, He W, Xu H, Cao X: Adaptor protein LAPF recruits phosphorylated p53 to lysosomes and triggers lysosomal destabilization in apoptosis. Cancer Res 2007, 67:11176-11185.
  • [59]Khanna KK, Jackson SP: DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001, 27:247-254.
  • [60]Martin RW, Orelli BJ, Yamazoe M, Minn AJ, Takeda S, Bishop DK: RAD51 up-regulation bypasses BRCA1 function and is a common feature of BRCA1-deficient breast tumors. Cancer Res 2007, 67:9658-9665.
  • [61]Saviozzi S, Ceppi P, Novello S, Ghio P, Lo Iacono M, Borasio P, Cambieri A, Volante M, Papotti M, Calogero RA, Scagliotti GV: Non-small cell lung cancer exhibits transcript overexpression of genes associated with homologous recombination and DNA replication pathways. Cancer Res 2009, 69:3390-3396.
  • [62]Dever SM, Golding SE, Rosenberg E, Adams BR, Idowu MO, Quillin JM, Valerie N, Xu B, Povirk LF, Valerie K: Mutations in the BRCT binding site of BRCA1 result in hyper-recombination. Aging (Albany NY) 2011, 3:515-532.
  • [63]Park BJ, Kang JW, Lee SW, Choi SJ, Shin YK, Ahn YH, Choi YH, Choi D, Lee KS, Kim S: The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell 2005, 120:209-221.
  • [64]Sumara I, Vorlaufer E, Gieffers C, Peters BH, Peters JM: Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol 2000, 151:749-762.
  • [65]Yazdi P, Wang Y, Zhao S, Patel N, Lee E, Qin J: SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev 2002, 16:571-582.
  • [66]Connor J, Weiser D, Li S, Hallenbeck J, Shenolikar S: Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol Cell Biol 2001, 21:6841-6850.
  • [67]Shtivelman E, Cohen FE, Bishop JM: A human gene (AHNAK) encoding an unusually large protein with a 1.2-microns polyionic rod structure. Proc Natl Acad Sci U S A 1992, 89:5472-5476.
  • [68]Stiff T, Shtivelman E, Jeggo P, Kysela B: AHNAK interacts with the DNA ligase IV-XRCC4 complex and stimulates DNA ligase IV-mediated double-stranded ligation. DNA Repair (Amst) 2004, 3:245-256.
  • [69]Oberley TD, Oberley LW: Antioxidant enzyme levels in cancer. Histol Histopathol 1997, 12:525-535.
  • [70]Bravard A, Hoffschir F, Sabatier L, Ricoul M, Pinton A, Cassingena R, Estrade S, Luccioni C, Dutrillaux B: Early superoxide dismutase alterations during SV40-transformation of human fibroblasts. Int J Cancer 1992, 52:797-801.
  • [71]Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD: Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 1995, 10:1989-2000.
  • [72]Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J: BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000, 14:927-939.
  • [73]Zhang J, Powell S: The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 2005, 3:531-539.
  • [74]Kuimov AN: Polypeptide components of telomere nucleoprotein complex. Biochemistry (Mosc) 2004, 69:117-129.
  • [75]Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG, Nicolette ML, Tsvetanov S, McIlwraith MJ, Pandita RK, White MF, Khanna KK: Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 2008, 453:677-681.
  文献评价指标  
  下载次数:70次 浏览次数:26次