期刊论文详细信息
Biotechnology for Biofuels
Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations
David M Donovan2  Stephen R Hughes1  Kenneth M Bischoff1  Piyum A Khatibi1  Dwayne R Roach2 
[1]US Department of Agriculture, National Center for Agricultural Utilization Research, Agricultural Research Service, Peoria, IL, 61604, USA
[2]US Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Animal & Natural Resources Institute, Agricultural Research Service, Beltsville, MD 20705, USA
关键词: Lactobacilli;    Lactobacillus;    Lactic acid bacteria;    Contamination;    Fermentation;    Ethanol;    Peptidoglycan;    endolysin;    Lysin;    Bacteriophage;   
Others  :  798155
DOI  :  10.1186/1754-6834-6-20
 received in 2012-09-21, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

Reduced yields of ethanol due to bacterial contamination in fermentation cultures weaken the economics of biofuel production. Lactic acid bacteria are considered the most problematic, and surveys of commercial fuel ethanol facilities have found that species of Lactobacillus are predominant. Bacteriophage lytic enzymes are peptidoglycan hydrolases that can degrade the Gram positive cell wall when exposed externally and provide a novel source of antimicrobials that are highly refractory to resistance development.

Results

The streptococcal phage LambdaSa2 (λSa2) endolysin demonstrated strong lytic activity towards 17 of 22 strains of lactobacilli, staphylococci or streptococci and maintained an optimal specific activity at pH 5.5 and in the presence of ≤ 5% ethanol (fermentation conditions) toward L. fermentum. Lactobacillus bacteriophage endolysins LysA, LysA2 and LysgaY showed exolytic activity towards 60% of the lactobacilli tested including four L. fermentum isolates from fuel ethanol fermentations. In turbidity reduction assays LysA was able to reduce optical density >75% for 50% of the sensitive strains and >50% for the remaining strains. LysA2 and LysgaY were only able to decrease cellular turbidity by <50%. Optimal specific activities were achieved for LysA, LysA2, and LysgaY at pH 5.5. The presence of ethanol (≤5%) did not reduce the lytic activity. Lysins were able to reduce both L. fermentum (BR0315-1) (λSa2 endolysin) and L. reuteri (B-14171) (LysA) contaminants in mock fermentations of corn fiber hydrolysates.

Conclusion

Bacteriophage lytic enzymes are strong candidates for application as antimicrobials to control lactic acid bacterial contamination in fuel ethanol fermentations.

【 授权许可】

   
2013 Roach et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706102915311.pdf 1116KB PDF download
Figure 4. 37KB Image download
Figure 3. 73KB Image download
Figure 2. 26KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]De La Torre Ugarte D, English BC, Jensen K: Sixty billion gallons by 2030: economic and agricultural impacts of ethanol and biodiesel expansion. Oregon: Portland;
  • [2]Connolly C: Bacterial contaminants and their effects on alcohol production. In The alcohol textbook. 3rd edition. Edited by Jacques K, Lyons TP, Kelsall DR. Nottingham, United Kingdom: Nottingham University Press; 1999:317-334.
  • [3]Skinner KA, Leathers TD: Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 2004, 31:401-408.
  • [4]Schell DJ, Dowe N, Ibsen KN, Riley CJ, Ruth MF, Lumpkin RE: Contaminant occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresource Technol 2007, 98:2942-2948.
  • [5]Beckner M, Ivey ML, Phister TG: Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 2011, 53:387-394.
  • [6]Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO: Modeling bacterial contamination of fuel ethanol fermentation. Biotech and Bioeng 2009, 103:117-122.
  • [7]Limayem A, Hanning IB, Muthaiyan A, Illeghems K, Kim J-W, Crandall PG, O'Bryan CA, Ricker DD: Alternative antimicrobial compounds to control potential Lactobacillus contamination in bioethanol fermentations. J Exp Med 2011, 48:709-714.
  • [8]Chang I-S, Kim B-H, Shin P-K, Lee Y-L: Bacterial contamination and its effects on ethanol fermentation. J Microbiol Immunol Infect 1995, 5:309-314.
  • [9]Lushia W, Heist P: Antibiotic resistant bacteria in fuel ethanol fermentations. Ethanol producer magazine 2005, 80-82.
  • [10]Narendranath NV: Bacterial contamination and control in ethanol production. In The alcohol textbook. 4th edition. Edited by Jacques KA, Lyons TP, Kelsall DR. Thrumpton, UK: Nottingham University Press; 2003:287-298.
  • [11]Makanjuola DB, Tymon A, Springham DG: Some effects of lactic-acid bacteria on laboratory-scale yeast fermentations. Enzyme and Microbial Technol 1992, 14:350-357.
  • [12]Narendranath NV, Hynes SH, Thomas KC, Ingledew WM: Effects of lactobacilli on yeast-catalyzed ethanol fermentations. Appl Environ Microbiol 1997, 63:4158-4163.
  • [13]Schnurer J, Magnusson J: Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 2005, 16:70-78.
  • [14]Lindgren SE, Dobrogosz WJ: Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 1990, 7:149-163.
  • [15]Sjogren J, Magnusson J, Broberg A, Schnurer J, Kenne L: Antifungal 3-hydrozy fatty acids from Lactobacillus plantatum MiLAB 14. Appl Environ Microbiol 2003, 69:7554-7557.
  • [16]Magnusson J, Strom K, Sogren S, Schnurer J: Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 2003, 219:129-135.
  • [17]Bischoff KM, Skinner-Nemec KA, Leathers TD: Antimicrobial susceptibility of Lactobacillus species isolated from commercial ethanol plants. J Ind Microbiol Biotechnol 2007, 34:739-744.
  • [18]McChesney DG: FY 2010 nationwide survey of distillers grains for antibiotic residues. US Food and Drug Administration; 2010.
  • [19]Bernhardt TG, Wang IN, Struck DK, Young R: Breaking free: "protein antibiotics" and phage lysis. Res Microbiol 2002, 153:493-501.
  • [20]Loeffler JM, Nelson D, Fischetti VA: Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001, 294:2170-2172.
  • [21]Nelson D, Loomis L, Fischetti VA: Prevention and elimination of upper respiratory colonization of mice by group a streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci USA 2001, 98:4107-4112.
  • [22]Schuch R, Nelson D, Fischetti VA: A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002, 418:884-889.
  • [23]Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM: Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 2012, 78:2297-2305.
  • [24]Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM: Endolysins as antimicrobials. Adv Virus Res 2012, 83:299-365.
  • [25]Schleifer KH, Kandler O: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972, 36:407-477.
  • [26]Fischetti VA: Bacteriophage endolysins: a novel anti-infective to control gram-positive pathogens. Int J Med Microbiol 2010, 300:357-362.
  • [27]Turner MS, Hafner LM, Walsh T, Giffard PM: Identification, characterisation and specificity of a cell wall lytic enzyme from Lactobacillus fermentum BR11. FEMS Microbiol Lett 2004, 238:9-15.
  • [28]Ribelles P, Rodriguez I, Suarez JE: LysA2, The Lactobacillus casei bacteriophage A2 lysin is an endopeptidase active on a wide spectrum of lactic acid bacteria. Appl Microbiol Biotechnol 2012, 94:101-110.
  • [29]Yokoi KJ, Shinohara M, Kawahigashi N, Nakagawa K, Kawasaki K, Nakamura S, Taketo A, Kodaira K: Molecular properties of the two-component cell lysis system encoded by prophage phigaY of Lactobacillus gasseri JCM 1131T: cloning, sequencing, and expression in Escherichia coli. Int J Food Microbiol 2005, 99:297-308.
  • [30]Pritchard DG, Dong S, Kirk MC, Cartee RT, Baker JR: LambdaSa1 And LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl Environ Microbiol 2007, 73:7150-7154.
  • [31]Donovan DM, Foster-Frey J: LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 2008, 287:22-33.
  • [32]Wang S, Kong J, Zhang X: Identification and characterization of the two-component cell lysis cassette encoded by temperate bacteriophage phiPYB5 of Lactobacillus fermentum. J Appl Microbiol 2008, 105:1939-1944.
  • [33]Bischoff KM, Poole TL, Beier RC: Antimicrobial resistance in food animals. In Preharvest and postharvest food safety: contemporary issues and future directions. Edited by Beier RC, Pillai SD, Phillips TD, Ziprin RL, Ames IA. Blackwell Publishing Professional; 2004:201-212.
  • [34]Spratt BG: Resistance to antibiotics mediated by target alterations. Science 1994, 264:388-393.
  • [35]Gerboux V, Villa A, Monany C, Bertrand A: Use of lysozyme to inhibit malolactic fermentation and to stabilize wine after malolactic fermentation. Am J Enol Vitic 1997, 48:49-54.
  • [36]Delfini C, Cersosimo M, Del Prete V, Strano M, Gaetano G, Pagliara A, Ambro S: Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts. J Agric Food Chem 2004, 52:1861-1866.
  • [37]Blattel V, Wirth K, Claus H, Schlott B, Pfeiffer P, Konig H: A lytic enzyme cocktail from Streptomyces sp. B578 For the control of lactic and acetic acid bacteria in wine. Appl Microbiol Biotechnol 2009, 83:839-848.
  • [38]Hoopes JT, Stark CJ, Kim HA, Sussman DJ, Donovan DM, Nelson DC: Use of a bacteriophage lysin, PlyC, as an enzyme disinfectant against Streptococcus equi. Appl Environ Microbiol 2009, 75:1388-1394.
  • [39]Graham S, Coote PJ: Potent, synergistic inhibition of Staphylococcus aureus upon exposure to a combination of the endopeptidase lysostaphin and the cationic peptide ranalexin. J Antimicrob Chemother 2007, 59:759-762.
  • [40]Eugster MR, Haug MC, Huwiler SG, Loessner MJ: The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol Microbiol 2011, 81:1419-1432.
  • [41]Russell I: Understanding yeast fundamentals. In The alcohol textbook. 4th edition. Edited by Jacques KA, Lyons TP, Kelsall DR. Thrumpton, UK: Nottingham University Press; 2003:85-119.
  • [42]Villion M, Moineau S: Bacteriophages of Lactobacillus. Front Biosci 2009, 14:1661-1683.
  • [43]Henrich B, Binishofer B, Blasi U: Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh. J Bacteriol 1995, 177:723-732.
  • [44]Oki M, Kakikawa M, Yamada K, Taketo A, Kodaira KI: Cloning, sequence analysis, and expression of the genes encoding lytic functions of bacteriophage phi g1e. Gene 1996, 176:215-223.
  • [45]Kakikawa M, Yokoi KJ, Kimoto H, Nakano M, Kawasaki K, Taketo A, Kodaira K: Molecular analysis of the lysis protein Lys encoded by Lactobacillus plantarum phage phig1e. Gene 2002, 299:227-234.
  • [46]Kashige N, Nakashima Y, Miake F, Watanabe K: Cloning, sequence analysis, and expression of Lactobacillus casei phage PL-1 lysis genes. Arch Virol 2000, 145:1521-1534.
  • [47]Deutsch SM, Guezenec S, Piot M, Foster S, Lortal S: Mur-LH, the broad-spectrum endolysin of Lactobacillus helveticus temperate bacteriophage phi-0303. Appl Environ Microbiol 2004, 70:96-103.
  • [48]Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM: Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 2009, 443:32-41.
  • [49]Becker SC, Foster-Frey J, Donovan DM: The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 2008, 287:185-191.
  • [50]Bischoff KM, Liu S, Hughes SR, Rich JO: Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnol Lett 2010, 32:823-828.
  文献评价指标  
  下载次数:13次 浏览次数:16次