期刊论文详细信息
Biotechnology for Biofuels
Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium
Tinggang Li1  Yu Yan1  Jianzhong He1 
[1] Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
关键词: Cassava;    Simultaneous saccharification and fermentation;    α-amylase;    Cofactor;    Clostridium sp.;    Butanol;   
Others  :  1229686
DOI  :  10.1186/s13068-015-0351-7
 received in 2015-02-03, accepted in 2015-09-30,  发布年份 2015
【 摘 要 】

Background

The main challenge of cassava-based biobutanol production is to enhance the simultaneous saccharification and fermentation with high hyperamylolytic activity and butanol yield. Manipulation of cofactor [e.g., Ca 2+and NAD/(P)H] levels as a potential tool to modulate carbon flux plays a key role in the cassava hydrolysis capacity and butanol productivity. Here, we aimed to develop a technology for enhancing butanol production with simultaneous hydrolysis of cassava (a typical model as a non-cereal starchy material) using a cofactor-dependent modulation method to maximize the production efficacy of biobutanol by Clostridium sp. stain BOH3.

Results

Supplementing CaCO 3to the medium containing cassava significantly promotes activities of α-amylase responsible for cassava hydrolysis and butanol production due to the role of Ca 2+cofactor-dependent pathway in conversion of cassava starch to reducing sugar and its buffering capacity. Also, after applying redox modulation with L-tryptophan (a precursor as de novo synthesis of NADH and NADPH), the levels of cofactor NADH and NADPH increased significantly by 67 % in the native cofactor-dependent system of the wild-type Clostridium sp. stain BOH3. Increasing availability of NADH and NADPH improved activities of NADH- and NADPH-dependent butanol dehydrogenases, and thus could selectively open the valve of carbon flux toward the more reduced product, butanol, against the more oxidized acid or acetone products. By combining CaCO 3and L-tryptophan, 17.8 g/L butanol with a yield of 30 % and a productivity of 0.25 g/L h was obtained with a hydrolytic capacity of 88 % towards cassava in a defined medium. The metabolic patterns were shifted towards more reduced metabolites as reflected by higher butanol–acetone ratio (76 %) and butanol–bioacid ratio (500 %).

Conclusions

The strategy of altering enzyme cofactor supply may provide an alternative tool to enhance the stimulation of saccharification and fermentation in a cofactor-dependent production system. While genetic engineering focuses on strain improvement to enhance butanol production, cofactor technology can fully exploit the productivity of a strain and maximize the production efficiency.

【 授权许可】

   
2015 Li et al.

附件列表
Files Size Format View
Fig.6. 70KB Image download
Fig.5. 58KB Image download
Fig.4. 46KB Image download
Fig.3. 16KB Image download
Fig.2. 25KB Image download
Fig.1. 40KB Image download
Fig.6. 70KB Image download
Fig.5. 58KB Image download
Fig.4. 46KB Image download
Fig.3. 16KB Image download
Fig.2. 25KB Image download
Fig.1. 40KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Green EM: Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 2011, 22:337-343.
  • [2]Kumar M, Gayen K: Developments in biobutanol production: new insights. Appl Energy 2011, 88:1999-2012.
  • [3]Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS: Fermentative butanol production by clostridia. Biotechnol Bioeng 2008, 101:209-228.
  • [4]Chiao JS, Sun ZH: History of the acetone–butanol–ethanol fermentation industry in China: development of continuous production technology. J Mol Microbiol Biotechnol 2007, 13:12-14.
  • [5]Liu D, Chen Y, Ding FY, Zhao T, Wu JL, Guo T, Ren HF, Li BB, Niu HQ, Cao Z, Lin XQ, Xie JJ, He XJ, Ying HJ: Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnol Biofuels 2014, 7:5. BioMed Central Full Text
  • [6]Ezeji TC, Qureshi N, Blaschek HP: Butanol fermentation research: upstream and downstream manipulations. Chem Rec 2004, 4:305-314.
  • [7]Tran HTM, Cheirsilp B, Hodgson B, Umsakul K: Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem Eng J 2010, 48:260-267.
  • [8]FAO. Food Outlook: Global Market Analysis. Food and Agriculture Organisation. 2012. http://www.fao.org/docrep/016/al993e/al993e00.pdf. Accessed 2 Nov 2012.
  • [9]Thang VH, Kobayashi G: A novel process for direct production of acetone–butanol–ethanol from native starches using granular starch hydrolyzing enzyme by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 2014, 172:1818-1931.
  • [10]Ezeji TC, Qureshi N, Karcher P, Blaschek HP: Production of butanol from corn. In Alcoholic Fuels. Edited by Minteer S. Taylor & Francis Group, Boca Raton; 2006:99-122.
  • [11]Thang VH, Kanda K, Kobayashi G: Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 2010, 161:157-170.
  • [12]Soni BK, Kapp C, Goma G, Soucaille P: Solvent production from starch: effect of pH on α-amylase and glucoamylase localization and synthesis in synthetic medium. Appl Microbiol Biotechnol 1992, 37:539-543.
  • [13]Trovati J, Giordano RC, Giordano RLC: Improving the performance of a continuous process for the production of ethanol from starch. Appl Biochem Biotechnol 2009, 156:506-520.
  • [14]Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B: Microbial α-amylases: a biotechnological perspective. Process Biochem 2003, 38:1599-1616.
  • [15]Malhotra R, Noorvez SM, Satyanarayana T: Production and partial characterization of thermostable and calcium independent alpha amylase of an extreme thermophile Bacillus thermoleovorans NP54. Lett Appl Microbiol 2000, 31:378-384.
  • [16]Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A: α-Amylases from microbial sources. Food Technol Biotechnol 2006, 44:173-184.
  • [17]Li TG, Yan Y, He J: Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresour Technol 2014, 155:220-228.
  • [18]Berríos-Rivera SJ, Bennett GN, San KY: The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 2002, 4:230-237.
  • [19]Knepper A, Schleicher M, Klauke M, Weuster-Botz D: Enhancement of the NAD(P)(H) pool in Saccharomyces cerevisiae. Eng Life Sci 2008, 8:381-389.
  • [20]Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G: Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 2003, 38:1397-1403.
  • [21]Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T: Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococcus profundus DT5432. Appl Environ Microbiol 1995, 61:1502-1506.
  • [22]Zheng Y, Bruice T: Conformation of coenzyme pyrroloquinoline quinone and role of Ca 2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc Natl Acad Sci USA 1997, 94:11881-11886.
  • [23]Vangnai AS, Arp DJ: An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by ‘Pseudomonas butanovora’. Microbiology 2001, 147:745-756.
  • [24]Li L, Ai HX, Zhang SX, Li S, Liang ZX, Wu ZQ, Yang ST, Wang JF: Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour Technol 2013, 143:397-404.
  • [25]Li HG, Qiang WL, Yu XB: Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma. Appl Biochem Biotechnol 2014, 172:3330-3341.
  • [26]Virunanon C, Ouephanit C, Burapatana V, Chulalaksananukul W: Cassava pulp enzymatic hydrolysis process as a preliminary step in bio-alcohols production from waste starchy resources. J Clean Prod 2013, 39:273-279.
  • [27]Jiang Y, Xu CM, Dong F, Yang YL, Jiang WH, Yang S: Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metab Eng 2009, 11:284-291.
  • [28]Han B, Ujor V, Lai LB, Gopalan V, Ezeji TC: Use of proteomic analysis to elucidate the role of calcium in acetone–butanol–ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2013, 79:282-293.
  • [29]Wang SH, Zhang YP, Dong HJ, Mao SM, Zhu Y, Wang RJ, Luan GD, Li Y: Formic acid triggers the “acid crash” of acetone–butanol–ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 2011, 77:1674-1680.
  • [30]Zhang Y, Ezeji TC: Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 2013, 6:66. BioMed Central Full Text
  • [31]Ezeji TC, Qureshi N, Blaschek HP: Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 2007, 97:1460-1469.
  • [32]Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E: Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 2010, 87:1303-1315.
  • [33]Wingren A, Galbe M, Zacchi G: Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 2003, 19:1109-1117.
  • [34]Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC: Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 2011, 77:2905-2915.
  • [35]Du YM, Jiang WY, Yu MR, Tang I-C, Yang S-T: Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnol Bioeng 2015, 112:705-715.
  • [36]Sillers R, Chow A, Tracy B, Papoutsakis ET: Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab Eng 2008, 10:321-332.
  • [37]Li ZG, Shi ZP, Xin S, Li L, Zheng JP, Wang ZG: Evaluation of high butanol/acetone ratios in ABE fermentations with cassava by graph theory and NADH regeneration analysis. Biotechnol Biopro Eng 2013, 18:759-769.
  • [38]Bramono SE, Lam YS, Ong SL, He J: A mesophilic Clostridium species that produces butanol from monosaccharides and hydrogen from polysaccharides. Bioresour Technol 2011, 102:9558-9563.
  • [39]He J, Ritalahti KM, Yang K-L, Koenigsberg SS, Loffler FE: Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 2003, 424:62-65.
  • [40]Dürre P, Kuhn A, Gottward M, Gottschalk G: Enzymatic investigations on butanol dehydrogenase and butyraldehyde dehydrogenase in extracts of Clostridium acetobutylicum. Appl Microbiol Biotechnol 1987, 26:268-272.
  • [41]Stim-Herndon KP, Nair R, Papoutsakis ET, Bennett GN: Analysis of degenerate variants of Clostridium acetobutylicum ATCC 824. Anaerobe 1996, 2:11-18.
  • [42]Gerischer U, Dürre P: Cloning, sequencing, and molecular analysis of the acetoacetate decarboxylase gene region from Clostridium acetobutylicum. J Bacteriol 1990, 172:6907-6918.
  文献评价指标  
  下载次数:56次 浏览次数:12次