期刊论文详细信息
Biotechnology for Biofuels
Sorghum mutant RG displays antithetic leaf shoot lignin accumulation resulting in improved stem saccharification properties
Carloalberto Petti1  Anne E Harman-Ware2  Mizuki Tateno1  Rekha Kushwaha1  Andrew Shearer1  A Bruce Downie1  Mark Crocker2  Seth DeBolt1 
[1] Plant Physiology, Department of Horticulture, Agricultural Science Center North, University of Kentucky, Lexington, KY 40546, USA
[2] Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511, USA
关键词: Lignin;    Biofuel;    Lignocellulose;    Cell wall;    Sorghum;    Phenylpropanoid;   
Others  :  797845
DOI  :  10.1186/1754-6834-6-146
 received in 2013-06-10, accepted in 2013-09-24,  发布年份 2013
PDF
【 摘 要 】

Background

Improving saccharification efficiency in bioenergy crop species remains an important challenge. Here, we report the characterization of a Sorghum (Sorghum bicolor L.) mutant, named REDforGREEN (RG), as a bioenergy feedstock.

Results

It was found that RG displayed increased accumulation of lignin in leaves and depletion in the stems, antithetic to the trend observed in wild type. Consistent with these measurements, the RG leaf tissue displayed reduced saccharification efficiency whereas the stem saccharification efficiency increased relative to wild type. Reduced lignin was linked to improved saccharification in RG stems, but a chemical shift to greater S:G ratios in RG stem lignin was also observed. Similarities in cellulose content and structure by XRD-analysis support the correlation between increased saccharification properties and reduced lignin instead of changes in the cellulose composition and/or structure.

Conclusion

Antithetic lignin accumulation was observed in the RG mutant leaf-and stem-tissue, which resulted in greater saccharification efficiency in the RG stem and differential thermochemical product yield in high lignin leaves. Thus, the red leaf coloration of the RG mutant represents a potential marker for improved conversion of stem cellulose to fermentable sugars in the C4 grass Sorghum.

【 授权许可】

   
2013 Petti et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706082514221.pdf 2210KB PDF download
Figure 7. 94KB Image download
Figure 6. 115KB Image download
Figure 5. 91KB Image download
Figure 4. 110KB Image download
Figure 3. 66KB Image download
Figure 2. 107KB Image download
Figure 1. 210KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Hook M, Xu T: Depletion of fossil fuels and anthropogenic climate change-a review. Ener Pol 2013, 52:797-809.
  • [2]Vernon C, Thompson E, Cornell S: Carbon dioxide emission scenarios: limitations of the fossil fuel resource. Proced Environ Sci 2011, 6:206-215.
  • [3]Byrt CS, Grof CPL, Furbank RT: C4 Plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective free access. J Integr Plant Biol 2011, 53(2):120-135.
  • [4]Jakubowski AR, Casler MD, Jackson RD: The benefits of harvesting wetland invaders for cellulosic biofuel: an ecosystem services perspective. Restor Ecol 2010, 18(6):789-795.
  • [5]Fatih Demirbas M: Biorefineries for biofuel upgrading: a critical review. Appl Energy 2009, 86(1(0):S151-S161.
  • [6]Wang X, Gowik U, Tang H, Bowers J, Westhoff P, Paterson A: Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biol 2009, 10(6):R68. BioMed Central Full Text
  • [7]Carmo-Silva AE, Francisco A, Powers SJ, Keys AJ, Ascensão L, Parry MAJ, Arrabaça MC: Grasses of different C4 subtypes reveal leaf traits related to drought tolerance in their natural habitats: changes in structure, water potential, and amino acid content. Am J Bot 2009, 96(7):1222-1235.
  • [8]Akin DE: Grass lignocellulose: strategies to overcome recalcitrance. Appl Biochem Biotechnol 2007, 137–140(1–12):3-15.
  • [9]Van Dyk JS, Pletschke BI: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factors affecting enzymes, conversion and synergy. Biotechnol Adv 2012, 30(6):1458-1480.
  • [10]Chandrakant P, Bisaria VS: Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 1998, 18(4):295-331.
  • [11]Muratov GA: Bioconversion of cotton cellulose to glucose by supercritical CO2. Chem Nat Compd 2007, 43(5):641-642.
  • [12]Oh K-K, Kim S-W, Jeong Y-S, Hong S-I: Bioconversion of cellulose into ethanol by nonisothermal simultaneous saccharification and fermentation. Appl Biochem Biotechnol 2000, 89(1):15-30.
  • [13]Wei Y, Yuan X, Shi X, Chu Y, Guo R: Bioconversion of wheat stalk to hydrogen by dark fermentation: effect of different mixed microflora on hydrogen yield and cellulose solubilisation. Bioresource Technol 2011, 102(4):3805-3809.
  • [14]Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W: Lignin biosynthesis and structure. Plant Physiol 2010, 153(3):895-905.
  • [15]Boerjan W, Ralph J, Bauchner M: Lignin biosynthesis. Annu Rev Plant Biol 2003, 54:519-546.
  • [16]Zhong R, Ye Z-H: Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 2009, 4:1028-1034.
  • [17]Mavandad M, Edwards R, Liang X, Lamb CJ, Dixon RA: Effect of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiol 1990, 94:671-680.
  • [18]Carpin S, Crevecoeur M, De Meyer M, Simon P, Greppin H, Penel C: Identification of a Ca2 + −pectate binding site on a apoplastic peroxidase. Plant Cell 2001, 13:511-520.
  • [19]Jorgenson LR: Brown midrib in maize and its linkage relations. J Am Soc Agron 1931, 23:549-557.
  • [20]Kuc J, Nelson OE: The abnormal lignins produced by the brown-midrib mutants of maize, I: the brown-midrib 1 mutant. Arch Biochem Biophys 1964, 105:103-113.
  • [21]Kuc J, Nelson OE, Flabagan P: Degradation of abnormal lignins in the brown-midrib mutants and double mutants of maize. Phytochem 1968, 7:1435-1436.
  • [22]Bout S, Vermerris W: A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Gen Genomics 2003, 269(2):205-214.
  • [23]Saballos A, Vermerris W, Rivera L, Ejeta G: Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (sorghum bicolor (L.) moench). Bioenerg Res 2008, 1(3–4):193-204.
  • [24]Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF: A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiol 2009, 150(2):584-595.
  • [25]Chen W, VanOpdorp N, Fitzl D, Tewari J, Friedemann P, Greene T, Thompson S, Kumpatla S, Zheng P: Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize. Plant Mol Biol 2012, 80(3):289-297.
  • [26]Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA: Brown-midrib maize (bm1) – a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 1998, 14(5):545-553.
  • [27]Barriere Y, Ralph J, Mechin V, Guillaumie S, Grabber JH, Argillier O, Chabbert B, Lapierre C: Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants. C R Biol 2004, 327(9,Äì10):847-860.
  • [28]Vermerris W, Sherman DM, McIntyre LM: Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition. J Exp Bot 2010, 61(9):2479-2490.
  • [29]Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW W, Dixon RA, Lamb CJ, Elkind Y: Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci 1994, 91:7608-7612.
  • [30]Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Physiol Plant Mol Biol 2010, 61(1):263-289.
  • [31]Hatfield RD, Wilson JR, Mertens DR: Composition of cell walls isolated from cell types of grain sorghum stems. J Sci Food Agric 1999, 79(6):891-899.
  • [32]Jae J, Tompsett GA, Lin Y-C, Carlson TR, Shen J, Zhang T, Yang B, Wyman CE, Conner WC, Huber GW: Depolymerization of lignocellulosic biomass to fuel precursors: maximizing carbon efficiency by combining hydrolysis with pyrolysis. Energy Environ Sci 2010, 3(3):358-365.
  • [33]Yang H, Yan R, Chen H, Lee DH, Zheng C: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86(12–13):1781-1788.
  • [34]Várhegyi G, Bobály B, Jakab E, Chen H: Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels 2011, 25:24-32.
  • [35]Chen F, Dixon RA: Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotech 2007, 25(7):759-761.
  • [36]Kandil A, Li J, Vasanthan T, Bressler DC: Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification. J Agric Food Chem 2012, 60(34):8444-8449.
  • [37]Draude KM, Kurniawan CB, Duff SJB: Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresource Technol 2001, 79(2):113-120.
  • [38]Sutcliffe R, Saddler JN: Role of ligniin Iin the adsorption on cellulases during enzymatic treatment of lignocellulosic material. Biotechnol Bioeng Symp 1986, 17:749-762.
  • [39]Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S: Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of eucalyptus globulus L. Mutants. Bioresource Technol 2012, 117(0):352-359.
  • [40]Ha J-H, Lee D-U, Lee J-T, Kim J-S, Yong C-S, Kim J-A, Ha J-S, Huh K: 4-Hydroxybenzaldehyde from gastrodia elata B1. Is active in the antioxidation and GABAergic neuromodulation of the rat brain. J Ethnopharmacol 2000, 73(1–2):329-333.
  • [41]Castro MC, Francini F, Schinella G, Caldiz CI, Zubiría MG, Gagliardino JJ, Massa ML: Apocynin administration prevents the changes induced by a fructose-rich diet on rat liver metabolism and the antioxidant system. Clin Sci 2012, 123(12):681-692.
  • [42]Jv H, Scott EL, Sanders J: Bulk chemicals from biomass. Biofuels Bioprod Bioref 2008, 2(1):41-57.
  • [43]Davison BH, Drescher SR, Tuskan GA, Davis MF, Nghiem NP: Variation of S/G ratio and lignin content in a populus family influences the release of xylose by dilute acid hydrolysis. Appl Biochem Biotechnol 2006, 129–132:427-435.
  • [44]Simmons BA, Loqué D, Ralph J: Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 2010, 13(3):312-319.
  • [45]Prior RL, Cao G: Flavonoids: diet and health relationships. Nutr Clin Care 2000, 3(5):279-288.
  • [46]Gray J, Caparrós-Ruiz D, Grotewold E: Grass phenylpropanoids: regulate before using! Plant Sci 2012, 184:112-120.
  • [47]Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A: CINNAMYL ALCOHOL DEHYDROGENASE-C and -D Are the primary genes involved in lignin biosynthesis in the floral stem of arabidopsis. Plant Cell 2005, 17(7):2059-2076.
  • [48]Robbins ML, Roy A, Wang P-H, Gaffoor I, Sekhon RS, De O, Buanafina MM, Rohila JS, Chopra S: Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize. J Proteom 2013, S1874-3919(1813):00335-00337.
  • [49]Russin WA, Evert RF, Vanderveer PJ, Sharkey TD, Briggs SP: Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell 1996, 8(4):645-658.
  • [50]Botha CEJ, Cross RHM, Bel AJE, Peter CI: Phloem loading in the sucrose-export-defective (SXD-1) mutant maize is limited by callose deposition at plasmodesmata in bundle sheath-vascular parenchyma interface. Protoplasma 2000, 214(1–2):65-72.
  • [51]Ma Y, Baker RF, Magallanes-Lundback M, DellaPenna D, Braun D: Tie-dyed1 and Sucrose export defective1 act independently to promote carbohydrate export from maize leaves. Planta 2008, 227(3):527-538.
  • [52]Sekhon RS, Childs KL, Santoro N, Foster CE, Buell CR, de Leon N, Kaeppler SM: Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize. Plant Physiol 2012, 159(4):1730-1744.
  • [53]Ceppi D, Sala M, Gentinetta E, Verderio A, Mottos M: Genotype-dependent leaf senescence in maize. Plant Physiol 1987, 85(3):720-725.
  • [54]Donaldson LA: Lignification and lignin topochemestry-an ultrastructural view. Phytochem 2001, 57:1069-1084.
  • [55]Veitia RA: Exploring the molecular etiology of dominant-negative mutations. Plant Cell 2007, 19(12):3843-3851.
  • [56]Espley RV, Brendolise C, Chagnè D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, et al.: Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 2009, 21(1):168-183.
  • [57]Saballos A, Sattler SE, Sanchez E, Foster TP, Xin Z, Kang C, Pedersen JF, Vermerris W: Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme a ligase involved in lignin biosynthesis in sorghum (sorghum. Plant J 2012, 70(5):818-830.
  • [58]Qazi HA, Paranjpe S, Bhargava S: Stem sugar accumulation in sweet sorghum-activity and expression of sucrose metabolizing enzymes and sucrose transporters. J Plant Physiol 2012, 169(6):605-613.
  • [59]Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R: Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol 2010, 154:555-561.
  • [60]Pedersen JF, Vogel KP, Funnell DL: Impact of reduced lignin on plant fitness joint contribution of the USDA-ARS and the univ. Of nebraska agric. Exp. Stn. As paper no. 14449, Journal series, nebraska agic. Exp. Stn., originally presented at the lignin and forage digestibility symposium, 2003 CSSA annual meeting, denver, CO. Crop Sci 2005, 45(3):812-819.
  • [61]Petti C, Khan M, Doohan F: Lipid transfer proteins and protease inhibitors as key factors in the priming of barley responses to fusarium head blight disease by a biocontrol strain of pseudomonas fluorescens. Funct Integr Genomics 2010, 10(4):619-927.
  • [62]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
  • [63]Harris D, Stork J, Debolt S: Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 2009, 1(1):51-61.
  • [64]Mendu V, Griffiths JS, Persson S, Stork J, Downie AB, Voiniciuc C, Haughn GW, DeBolt S: Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiol 2011, 157(1):441-453.
  • [65]Updegraff DM: Micro detemination of cellulose in biological materials’. S Anal Biochem 1969, 32:420-442.
  • [66]Reiter W-D, Chapple CCS, Somerville CR: Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 1993, 261:1032-1035.
  • [67]Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Petti C, Smilgies D-M, Estevez JM, Bonetta D, Urbanowicz BR, et al.: Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci 2012, 109(11):4098-4103.
  • [68]Harris D, DeBolt S: Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation. PLoS ONE 2008, 3(8):e2897.
  文献评价指标  
  下载次数:27次 浏览次数:5次