期刊论文详细信息
Biotechnology for Biofuels
Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production
Hui Shen2  Charleson R Poovaiah2  Angela Ziebell2  Timothy J Tschaplinski2  Sivakumar Pattathil2  Erica Gjersing2  Nancy L Engle2  Rui Katahira1  Yunqiao Pu2  Robert Sykes2  Fang Chen2  Arthur J Ragauskas2  Jonathan R Mielenz2  Michael G Hahn2  Mark Davis2  C Neal Stewart2  Richard A Dixon1 
[1] Present address: Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
[2] BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
关键词: Pectin;    Hemicellulose;    Lignin;    Recalcitrance;    Cell wall;    Transcription factor;    PvMYB4;    Cellulosic ethanol;    Feedstock;    Biofuel;    Bioenergy;    Switchgrass;   
Others  :  798052
DOI  :  10.1186/1754-6834-6-71
 received in 2013-02-07, accepted in 2013-04-30,  发布年份 2013
PDF
【 摘 要 】

Background

Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, “absent technological breakthroughs”, it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold.

Results

We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance.

Conclusions

Our results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production.

【 授权许可】

   
2013 Shen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706095029701.pdf 2399KB PDF download
Figure 5. 134KB Image download
Figure 4. 103KB Image download
Figure 3. 118KB Image download
Figure 2. 56KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Wang M, Wu M, Huo H: Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2007, 2:024001.
  • [2]Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 2005, 96:673-686.
  • [3]Liu ZL, Blaschek HP: Biomass conversion inhibitors and in situ detoxification. In Biomass to Biofuels: Strategies for Global Industries. Edited by Vertès AA, Qureshi N, Blaschek HP, Yukawa H. Oxford, UK: Blackwell Publishing Ltd; 2010. 10.1002/9780470750025.ch12
  • [4]McLaughlin SB, Adams Kszos L: Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28:515-535.
  • [5]Schmer MR, Vogel KP, Mitchell RB, Perrin RK: Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences USA 2008, 105:464-469.
  • [6]Keshwani DR, Cheng JJ: Switchgrass for bioethanol and other value-added applications: A review. Bioresour Technol 2009, 100:1515-1523.
  • [7]Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM: Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS One 2011, 6:e16416.
  • [8]Fu C, Xiao X, Xi Y, Ge Y, Chen F, Bouton J, Dixon RA, Wang ZY: Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Res 2011, 4:153-164.
  • [9]Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Chen F, Bouton J, Foston M, Dixon RA, Wang Z-Y: Genetic manipulation of lignin biosynthesis in switchgrass significantly reduces recalcitrance and improves biomass ethanol production. Proceedings of the National Academy of Sciences USA 2011, 108:3803-3808.
  • [10]Klinke HB, Thomsen A, Ahring BK: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 2004, 66:10-26.
  • [11]Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK, Parks JM, Smith JC, Samuel R, Jiang N, Pu Y: Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnology for Biofuels 2012, 5:71. BioMed Central Full Text
  • [12]Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J, Mann DGJ, Wang H, Jackson L, Tang Y, Neal Stewart C: Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 2012, 193:121-136.
  • [13]Hardin CF, Fu C, Hisano H, Xiao X, Shen H, Stewart CN Jr, Parrott W, Dixon RA, Wang Z-Y: Standardization of switchgrass sample collection for cell wall and biomass trait analysis. BioEnergy Res 2013, 1-8.
  • [14]Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas A, Dixon RA, Davis M: Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 2010, 285:38961-38968.
  • [15]Pattathil S, Avci U, Miller JS, Hahn MG: Immunological approaches to plant cell wall and biomass characterization: glycome profiling. Biomass Conversion: Methods and Protocols Methods in Molecular Biology 2012, 908:61-72.
  • [16]Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C: A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 2010, 153:514-525.
  • [17]Meikle PJ, Hoogenraad NJ, Bonig I, Clarke AE, Stone BA: A (1 → 3,1 → 4)-β-glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1 → 3,1 → 4)-β-glucans. Plant J 1994, 5:1-9.
  • [18]Hoffman M, Jia ZH, Peña MJ, Cash M, Harper A, Blackburn AR, Darvill A, York WS: Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 2005, 340:1826-1840.
  • [19]Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG: Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal α-(1 → 2)-linked fucosyl-containing epitope. Plant Physiol 1994, 104:699-710.
  • [20]Humbird D, Davis R, Kinchin C, Tao L, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D: Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. NREL Technical Report 2011. NREL/TP-5100-47767. http://www.nrel.gov/docs/fy11osti/47764.pdf webcite
  • [21]Clark TA, Mackie KL: Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J Chemical Technology and Biotechnology Biotechnology 1984, 34:101-110.
  • [22]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
  • [23]Du L, Yu P, Rossnagel BG, Christensen DA, McKinnon JJ: Physicochemical characteristics, hydroxycinnamic acids (ferulic acid, p-coumaric acid) and their ratio, and in situ biodegradability: comparison of genotypic differences among six barley varieties. J Agric Food Chem 2009, 57:4777-4783.
  • [24]Shen H, Fu C, Xiao X, Ray T, Tang Y, Wang Z, Chen F: Developmental control of lignification in stems of lowland switchgrass variety Alamo and the effects on saccharification efficiency. BioEnergy Res 2009, 2:233-245.
  • [25]Hatfield RD, Chaptman AK: Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin. J Agric Food Chem 2009, 57:4243-4249.
  • [26]Ralph J: Hydroxycinnamates in lignification. Phytochemistry Rev 2010, 9:65-83.
  • [27]Grabber JH, Mertens DR, Kim H, Funk C, Liu F, Ralph J: Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J Sci Food Agric 2009, 89:122-129.
  • [28]Monro J, Bailey R, Penny D: Polysaccharide composition in relation to extensibility and possible peptide linked arabino-galactan of lupin hypocotyl cell walls. Phytochemistry 1972, 11:1597-1602.
  • [29]Selvendran RR, Davies A, Tidder E: Cell wall glycoproteins and polysaccharides of mature runner beans. Phytochemistry 1975, 14:2169-2174.
  • [30]Wi S, Singh A, Lee K, Kim Y: The pattern of distribution of pectin, peroxidase and lignin in the middle lamella of secondary xylem fibres in alfalfa (Medicago sativa). Ann Bot 2005, 95:863-868.
  • [31]Donaldson LA: Lignification and lignin topochemistry–an ultrastructural view. Phytochemistry 2001, 57:859-873.
  • [32]DeMartini JD, Pattathil S, Avci U, Szekalski K, Mazumder K, Hahn MG, Wyman CE: Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy & Environmental Sci 2011, 4:4332-4339.
  • [33]Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC: Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol 2003, 132:1033-1040.
  • [34]Campbell P, Braam J: Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 1999, 4:361-366.
  • [35]Levy S, Maclachlan G, Staehelin LA: Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 1997, 11:373-386.
  • [36]Levy S, York WS, Stuike‒Prill R, Meyer B, Staehelin LA: Simulations of the static and dynamic molecular conformations of xyloglucan. The role of the fucosylated sidechain in surface‒specific sidechain folding. Plant J 1991, 1:195-215.
  • [37]Medford JI, Elmer JS, Klee HJ: Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell 1991, 3:359-370.
  • [38]Fry SC, Aldington S, Hetherington PR, Aitken J: Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol 1993, 103:1-5.
  • [39]Vargas-Rechia C, Reicher F, Sierakowski MR, Heyraud A, Driguez H, Liénart Y: Xyloglucan octasaccharide XXLGol derived from the seeds of Hymenaea courbaril acts as a signaling molecule. Plant Physiol 1998, 116:1013-1021.
  • [40]Burris JN, Mann DGJ, Joyce BL, Stewart CN: An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.). BioEnergy Res 2009, 2:267-274.
  • [41]Blumenkrantz N, Asboe-Hansen G: New method for quantitative determination of uronic acids. Anal Biochem 1973, 54:484-489.
  • [42]Yang B, Wyman CE: Dilute acid and autohydrolysis pretreatment. Biofuels Methods and Protocols Series, Methods in Molecular Biology: Biofuels 2009, 581:103-114.
  • [43]Björkman A: Studied on finely divided wood. Part I. Extractions of lignin with neutral solvents. Svensk papperstidn 1956, 59:477-485.
  • [44]Dence SYL CW, Timell TE: Methods in Lignin Chemistry. Berlin: Berlin: Springer; 1992.
  • [45]Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, Van Reusel B, Storme V, De Rycke R: Engineering traditional monolignols out of lignin by concomitant up‒regulation of F5H1 and down‒regulation of COMT in Arabidopsis. Plant J 2010, 64:885-897.
  • [46]Chang H, Cowling EB, Brown W, Adler E, Miksche G: Comparative studies on cellulolytic enzyme lignin and milled wood lignin of sweetgum and spruce. Holzforschung 1975, 29:153-159.
  文献评价指标  
  下载次数:112次 浏览次数:67次