| BMC Biotechnology | |
| Large-scale cell production of stem cells for clinical application using the automated cell processing machine | |
| Daisuke Kami5  Keizo Watakabe4  Mayu Yamazaki-Inoue3  Kahori Minami3  Tomoya Kitani1  Yoko Itakura2  Masashi Toyoda2  Takashi Sakurai4  Akihiro Umezawa3  Satoshi Gojo5  | |
| [1] Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan | |
| [2] Department of Vascular Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan | |
| [3] Department of Reproductive Biology and Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan | |
| [4] System Technology Development Center, Kawasaki Heavy Industries, Ltd., 3-1-1 Higashi Kawasaki-cho, Chuo-ku, Kobe 650-8670, Japan | |
| [5] Department of Regenerative Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan | |
| 关键词: Cell processing facility; Clinical trial; Stem cells; Cell transplantation; Automated cell culture system; | |
| Others : 1112978 DOI : 10.1186/1472-6750-13-102 |
|
| received in 2013-05-07, accepted in 2013-11-12, 发布年份 2013 | |
【 摘 要 】
Background
Cell-based regeneration therapies have great potential for application in new areas in clinical medicine, although some obstacles still remain to be overcome for a wide range of clinical applications. One major impediment is the difficulty in large-scale production of cells of interest with reproducibility. Current protocols of cell therapy require a time-consuming and laborious manual process. To solve this problem, we focused on the robotics of an automated and high-throughput cell culture system. Automated robotic cultivation of stem or progenitor cells in clinical trials has not been reported till date. The system AutoCulture® used in this study can automatically replace the culture medium, centrifuge cells, split cells, and take photographs for morphological assessment. We examined the feasibility of this system in a clinical setting.
Results
We observed similar characteristics by both the culture methods in terms of the growth rate, gene expression profile, cell surface profile by fluorescence-activated cell sorting, surface glycan profile, and genomic DNA stability. These results indicate that AutoCulture® is a feasible method for the cultivation of human cells for regenerative medicine.
Conclusions
An automated cell-processing machine will play important roles in cell therapy and have widespread use from application in multicenter trials to provision of off-the-shelf cell products.
【 授权许可】
2013 Kami et al.; licensee BioMed Central Ltd.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 4. | 69KB | Image | |
| Figure 3. | 84KB | Image | |
| Figure 2. | 74KB | Image | |
| Figure 1. | 85KB | Image | |
| Figure 4. | 69KB | Image | |
| Figure 3. | 84KB | Image | |
| Figure 2. | 74KB | Image | |
| Figure 1. | 85KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M, et al.: Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 2008, 52(23):1858-1865.
- [2]Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007, 115(7):896-908.
- [3]Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, Fiumana E, Rastaldo R, Arcarese ML, Mitchell TS, et al.: Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 2008, 103(1):107-116.
- [4]Vogel G: Stem cells for sale. Science 2010, 330(6008):1173.
- [5]Tran CA, Burton L, Russom D, Wagner JR, Jensen MC, Forman SJ, DiGiusto DL: Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J Immunother 2007, 30(6):644-654.
- [6]Soncin S, Lo Cicero V, Astori G, Soldati G, Gola M, Surder D, Moccetti T: A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice. J Transl Med 2009, 7:78. BioMed Central Full Text
- [7]Joannides A, Fiore-Heriche C, Westmore K, Caldwell M, Compston A, Allen N, Chandran S: Automated mechanical passaging: a novel and efficient method for human embryonic stem cell expansion. Stem Cells 2006, 24(2):230-235.
- [8]Kino-Oka M, Ogawa N, Umegaki R, Taya M: Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 2005, 11(3–4):535-545.
- [9]Terstegge S, Laufenberg I, Pochert J, Schenk S, Itskovitz-Eldor J, Endl E, Brustle O: Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 2007, 96(1):195-201.
- [10]Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C: Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 2009, 102(6):1636-1644.
- [11]Koike H, Kubota K, Sekine K, Takebe T, Ouchi R, Zheng YW, Ueno Y, Tanigawa N, Taniguchi H: Establishment of automated culture system for murine induced pluripotent stem cells. BMC Biotechnol 2012, 12:81. BioMed Central Full Text
- [12]Thomas RJ, Chandra A, Liu Y, Hourd PC, Conway PP, Williams DJ: Manufacture of a human mesenchymal stem cell population using an automated cell culture platform. Cytotechnology 2007, 55(1):31-39.
- [13]Hubbell JA, Palsson BO, Papoutsakis ET: Preface: tissue engineering and cell therapies: II. Biotechnol Bioeng 1994, 43(8):683.
- [14]Thomas R, Chandra A, Hourd P, Williams D: Cell culture automation and quality engineering: a necessary partnership to develop optimized manufacturing processes for cell-based therapies. J Assoc Lab Autom 2008, 13(3):152-158.
- [15]Thomas RJ, Hourd PC, Williams DJ: Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use. J Biotechnol 2008, 136(3–4):148-155.
- [16]Takehara N, Ogata T, Nakata M, Kami D, Nakamura T, Matoba S, Gojo S, Sawada T, Yaku H, Matsubara H: The ALCADIA (Autologous Human Cardiac-Derived Stem Cell to Treat Ischemic Cardiomyopathy) trial. PHILADELPHIA, PA: LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST; 2012:19106-3621. [Circulation] USA: 2783–2783
- [17]Toyoda M, Yamazaki-Inoue M, Itakura Y, Kuno A, Ogawa T, Yamada M, Akutsu H, Takahashi Y, Kanzaki S, Narimatsu H, et al.: Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2011, 16(1):1-11.
- [18]Sharov AA, Dudekula DB, Ko MS: A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 2005, 21(10):2548-2549.
- [19]Ptaszek LM, Mansour M, Ruskin JN, Chien KR: Towards regenerative therapy for cardiac disease. Lancet 2012, 379(9819):933-942.
- [20]Gojo S, Toyoda M, Umezawa A: Tissue engineering and cell-based therapy toward integrated strategy with artificial organs. J Artif Organs 2011, 14(3):171-177.
- [21]Liu Y, Hourd P, Chandra A, Williams DJ: Human cell culture process capability: a comparison of manual and automated production. J Tissue Eng Regen Med 2010, 4(1):45-54.
- [22]Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, et al.: Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 2010, 107(19):8639-8643.
- [23]Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O: Good manufacturing practice and clinical-grade human embryonic stem cell lines. Human Mol Genet 2008, 17(R1):R48-R53.
- [24]Allport-Settle MJ: Good Manufacturing Practice (GMP) Guidelines. Raleigh: Pharmalogika; 2009.
- [25]Burger SR: Current regulatory issues in cell and tissue therapy. Cytotherapy 2003, 5(4):289-298.
- [26]USP: 32-NF 27 Cell and gene therapy products. United States Pharmacopeia, Rockville: Manufacturing of cell therapy products; 2008.
- [27]Niazi SK: Sterile products, vol. 6. London: Informa Healthcare Inc; 2009.
- [28]Takehara NOT, Nakata M, Kami D, Matoba NT, Gojo S, Sawada T, Yaku H, Matsubara H: The ALCADIA (autologous Human Cardiac-derived Stem Cell To Treat Ischemic Cardiomyopathy) Trial. Los Angeles: American Heart Association, Scientific Session; 2012. [Late Breaking Clinical Trial Application]
- [29]Kuno A, Itakura Y, Toyoda M, Takahashi Y, Yamada M, Umezawa A, Hirabayashi J: Development of a data-mining system for differential profiling of cell glycoproteins based on lectin microarray. J Proteom Bioinfo 2008, 1(2):5.
- [30]Itakura Y, Kimura M, Gojo S, Toyoda M, Kami D, Motomura N, Umezawa A, Kyo S, Ono M: Glycan profiling using a lectin microarray is a novel validation tool for monitoring the damage to freeze-thawed cells. Low Temp Med 2011, 37:7.