期刊论文详细信息
BMC Biotechnology
Large-scale cell production of stem cells for clinical application using the automated cell processing machine
Daisuke Kami5  Keizo Watakabe4  Mayu Yamazaki-Inoue3  Kahori Minami3  Tomoya Kitani1  Yoko Itakura2  Masashi Toyoda2  Takashi Sakurai4  Akihiro Umezawa3  Satoshi Gojo5 
[1] Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
[2] Department of Vascular Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
[3] Department of Reproductive Biology and Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
[4] System Technology Development Center, Kawasaki Heavy Industries, Ltd., 3-1-1 Higashi Kawasaki-cho, Chuo-ku, Kobe 650-8670, Japan
[5] Department of Regenerative Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
关键词: Cell processing facility;    Clinical trial;    Stem cells;    Cell transplantation;    Automated cell culture system;   
Others  :  1112978
DOI  :  10.1186/1472-6750-13-102
 received in 2013-05-07, accepted in 2013-11-12,  发布年份 2013
【 摘 要 】

Background

Cell-based regeneration therapies have great potential for application in new areas in clinical medicine, although some obstacles still remain to be overcome for a wide range of clinical applications. One major impediment is the difficulty in large-scale production of cells of interest with reproducibility. Current protocols of cell therapy require a time-consuming and laborious manual process. To solve this problem, we focused on the robotics of an automated and high-throughput cell culture system. Automated robotic cultivation of stem or progenitor cells in clinical trials has not been reported till date. The system AutoCulture® used in this study can automatically replace the culture medium, centrifuge cells, split cells, and take photographs for morphological assessment. We examined the feasibility of this system in a clinical setting.

Results

We observed similar characteristics by both the culture methods in terms of the growth rate, gene expression profile, cell surface profile by fluorescence-activated cell sorting, surface glycan profile, and genomic DNA stability. These results indicate that AutoCulture® is a feasible method for the cultivation of human cells for regenerative medicine.

Conclusions

An automated cell-processing machine will play important roles in cell therapy and have widespread use from application in multicenter trials to provision of off-the-shelf cell products.

【 授权许可】

   
2013 Kami et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 4. 69KB Image download
Figure 3. 84KB Image download
Figure 2. 74KB Image download
Figure 1. 85KB Image download
Figure 4. 69KB Image download
Figure 3. 84KB Image download
Figure 2. 74KB Image download
Figure 1. 85KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H, Ueyama T, Takahashi T, Takamatsu T, Fukushima M, Komeda M, et al.: Controlled delivery of basic fibroblast growth factor promotes human cardiosphere-derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J Am Coll Cardiol 2008, 52(23):1858-1865.
  • [2]Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marban E: Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007, 115(7):896-908.
  • [3]Rota M, Padin-Iruegas ME, Misao Y, De Angelis A, Maestroni S, Ferreira-Martins J, Fiumana E, Rastaldo R, Arcarese ML, Mitchell TS, et al.: Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 2008, 103(1):107-116.
  • [4]Vogel G: Stem cells for sale. Science 2010, 330(6008):1173.
  • [5]Tran CA, Burton L, Russom D, Wagner JR, Jensen MC, Forman SJ, DiGiusto DL: Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity. J Immunother 2007, 30(6):644-654.
  • [6]Soncin S, Lo Cicero V, Astori G, Soldati G, Gola M, Surder D, Moccetti T: A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice. J Transl Med 2009, 7:78. BioMed Central Full Text
  • [7]Joannides A, Fiore-Heriche C, Westmore K, Caldwell M, Compston A, Allen N, Chandran S: Automated mechanical passaging: a novel and efficient method for human embryonic stem cell expansion. Stem Cells 2006, 24(2):230-235.
  • [8]Kino-Oka M, Ogawa N, Umegaki R, Taya M: Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 2005, 11(3–4):535-545.
  • [9]Terstegge S, Laufenberg I, Pochert J, Schenk S, Itskovitz-Eldor J, Endl E, Brustle O: Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 2007, 96(1):195-201.
  • [10]Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C: Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 2009, 102(6):1636-1644.
  • [11]Koike H, Kubota K, Sekine K, Takebe T, Ouchi R, Zheng YW, Ueno Y, Tanigawa N, Taniguchi H: Establishment of automated culture system for murine induced pluripotent stem cells. BMC Biotechnol 2012, 12:81. BioMed Central Full Text
  • [12]Thomas RJ, Chandra A, Liu Y, Hourd PC, Conway PP, Williams DJ: Manufacture of a human mesenchymal stem cell population using an automated cell culture platform. Cytotechnology 2007, 55(1):31-39.
  • [13]Hubbell JA, Palsson BO, Papoutsakis ET: Preface: tissue engineering and cell therapies: II. Biotechnol Bioeng 1994, 43(8):683.
  • [14]Thomas R, Chandra A, Hourd P, Williams D: Cell culture automation and quality engineering: a necessary partnership to develop optimized manufacturing processes for cell-based therapies. J Assoc Lab Autom 2008, 13(3):152-158.
  • [15]Thomas RJ, Hourd PC, Williams DJ: Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use. J Biotechnol 2008, 136(3–4):148-155.
  • [16]Takehara N, Ogata T, Nakata M, Kami D, Nakamura T, Matoba S, Gojo S, Sawada T, Yaku H, Matsubara H: The ALCADIA (Autologous Human Cardiac-Derived Stem Cell to Treat Ischemic Cardiomyopathy) trial. PHILADELPHIA, PA: LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST; 2012:19106-3621. [Circulation] USA: 2783–2783
  • [17]Toyoda M, Yamazaki-Inoue M, Itakura Y, Kuno A, Ogawa T, Yamada M, Akutsu H, Takahashi Y, Kanzaki S, Narimatsu H, et al.: Lectin microarray analysis of pluripotent and multipotent stem cells. Genes Cells 2011, 16(1):1-11.
  • [18]Sharov AA, Dudekula DB, Ko MS: A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 2005, 21(10):2548-2549.
  • [19]Ptaszek LM, Mansour M, Ruskin JN, Chien KR: Towards regenerative therapy for cardiac disease. Lancet 2012, 379(9819):933-942.
  • [20]Gojo S, Toyoda M, Umezawa A: Tissue engineering and cell-based therapy toward integrated strategy with artificial organs. J Artif Organs 2011, 14(3):171-177.
  • [21]Liu Y, Hourd P, Chandra A, Williams DJ: Human cell culture process capability: a comparison of manual and automated production. J Tissue Eng Regen Med 2010, 4(1):45-54.
  • [22]Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, et al.: Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci USA 2010, 107(19):8639-8643.
  • [23]Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O: Good manufacturing practice and clinical-grade human embryonic stem cell lines. Human Mol Genet 2008, 17(R1):R48-R53.
  • [24]Allport-Settle MJ: Good Manufacturing Practice (GMP) Guidelines. Raleigh: Pharmalogika; 2009.
  • [25]Burger SR: Current regulatory issues in cell and tissue therapy. Cytotherapy 2003, 5(4):289-298.
  • [26]USP: 32-NF 27 Cell and gene therapy products. United States Pharmacopeia, Rockville: Manufacturing of cell therapy products; 2008.
  • [27]Niazi SK: Sterile products, vol. 6. London: Informa Healthcare Inc; 2009.
  • [28]Takehara NOT, Nakata M, Kami D, Matoba NT, Gojo S, Sawada T, Yaku H, Matsubara H: The ALCADIA (autologous Human Cardiac-derived Stem Cell To Treat Ischemic Cardiomyopathy) Trial. Los Angeles: American Heart Association, Scientific Session; 2012. [Late Breaking Clinical Trial Application]
  • [29]Kuno A, Itakura Y, Toyoda M, Takahashi Y, Yamada M, Umezawa A, Hirabayashi J: Development of a data-mining system for differential profiling of cell glycoproteins based on lectin microarray. J Proteom Bioinfo 2008, 1(2):5.
  • [30]Itakura Y, Kimura M, Gojo S, Toyoda M, Kami D, Motomura N, Umezawa A, Kyo S, Ono M: Glycan profiling using a lectin microarray is a novel validation tool for monitoring the damage to freeze-thawed cells. Low Temp Med 2011, 37:7.
  文献评价指标  
  下载次数:69次 浏览次数:17次