期刊论文详细信息
Biotechnology for Biofuels
Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production
Marisa A Lima5  Leonardo D Gomez2  Clare G Steele-King2  Rachael Simister2  Oigres D Bernardinelli5  Marcelo A Carvalho4  Camila A Rezende1  Carlos A Labate3  Eduardo R deAzevedo5  Simon J McQueen-Mason2  Igor Polikarpov5 
[1] Instituto de Química, Universidade de Campinas, Caixa Postal 6154, Campinas SP 13083-970, Brazil
[2] CNAP, Department of Biology, University of York, York, Heslington YO10 5DD, UK
[3] Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Campinas, SP, Brazil
[4] Embrapa Cerrados, Genética e Melhoramento de Forrageiras, Br 020, Km 18 – Cx. P. 08223, Planaltina DF 73301-970, Brazil
[5] Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos SP 13560-970, Brazil
关键词: Sugarcane bagasse;    Scanning electron microscopy;    Pretreatments;    Pennisetum purpureum;    Panicum maximum;    Eucalyptus barks;    Enzymatic saccharification;    Chemical composition;    Brazilian grasses;    Brachiaria brizantha;    Bioethanol;   
Others  :  794009
DOI  :  10.1186/1754-6834-7-10
 received in 2013-06-21, accepted in 2013-12-06,  发布年份 2014
PDF
【 摘 要 】

Background

The search for promising and renewable sources of carbohydrates for the production of biofuels and other biorenewables has been stimulated by an increase in global energy demand in the face of growing concern over greenhouse gas emissions and fuel security. In particular, interest has focused on non-food lignocellulosic biomass as a potential source of abundant and sustainable feedstock for biorefineries. Here we investigate the potential of three Brazilian grasses (Panicum maximum, Pennisetum purpureum and Brachiaria brizantha), as well as bark residues from the harvesting of two commercial Eucalyptus clones (E. grandis and E. grandis x urophylla) for biofuel production, and compare these to sugarcane bagasse. The effects of hot water, acid, alkaline and sulfite pretreatments (at increasing temperatures) on the chemical composition, morphology and saccharification yields of these different biomass types were evaluated.

Results

The average yield (per hectare), availability and general composition of all five biomasses were compared. Compositional analyses indicate a high level of hemicellulose and lignin removal in all grass varieties (including sugarcane bagasse) after acid and alkaline pretreatment with increasing temperatures, whilst the biomasses pretreated with hot water or sulfite showed little variation from the control. For all biomasses, higher cellulose enrichment resulted from treatment with sodium hydroxide at 130°C. At 180°C, a decrease in cellulose content was observed, which is associated with high amorphous cellulose removal and 5-hydroxymethyl-furaldehyde production. Morphological analysis showed the effects of different pretreatments on the biomass surface, revealing a high production of microfibrillated cellulose on grass surfaces, after treatment with 1% sodium hydroxide at 130°C for 30 minutes. This may explain the higher hydrolysis yields resulting from these pretreatments, since these cellulosic nanoparticles can be easily accessed and cleaved by cellulases.

Conclusion

Our results show the potential of three Brazilian grasses with high productivity yields as valuable sources of carbohydrates for ethanol production and other biomaterials. Sodium hydroxide at 130°C was found to be the most effective pretreatment for enhanced saccharification yields. It was also efficient in the production of microfibrillated cellulose on grass surfaces, thereby revealing their potential as a source of natural fillers used for bionanocomposites production.

【 授权许可】

   
2014 Lima et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705061655450.pdf 2732KB PDF download
Figure 12. 67KB Image download
Figure 11. 238KB Image download
Figure 10. 71KB Image download
Figure 9. 128KB Image download
Figure 8. 41KB Image download
Figure 7. 115KB Image download
Figure 6. 95KB Image download
Figure 5. 97KB Image download
Figure 4. 166KB Image download
Figure 3. 97KB Image download
Figure 2. 160KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM: Ethanol can contribute to energy and environmental goals. Science 2006, 311:506-508.
  • [2]Havlík P, Schneider UA, Schmid E, Böttcher H, Fritz S, Skalský R, Aoki K, Cara SD, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M: Global land-use implications of first and second generation biofuel targets. Energy Policy 2011, 39:5690-5702.
  • [3]Rosegrant MW, Zhu T, Msangi S, Sulser T: Global scenarios for biofuels: impacts and implications. App Econ Perspect Policy 2008, 30:495-505.
  • [4]Lora ES, Andrade RV: Biomass as energy source in Brazil. Renew Sust Energ Rev 2009, 13:777-788.
  • [5]La Rovere EL, Pereira AS, Simões AF: Biofuels and sustainable energy development in Brazil. World Dev 2011, 39:1026-1036.
  • [6]Hill J: Environmental costs and benefits of transportation biofuel production from food- and lignocellulose-based energy crops: a review. In Sustainable Agriculture. Netherlands: Springer; 2009:125-139.
  • [7]Granda CB, Zhu L, Holtzapple MT: Sustainable liquid biofuels and their environmental impact. Environ Prog 2007, 26:233-250.
  • [8]Seabra JEA, Macedo IC: Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energ Policy 2011, 39:421-428.
  • [9]Conab: Acompanhamento da safra brasileira de cana-de-açúcar. Brasília-DF: Companhia Nacional de Abastecimento; 2012. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/12_12_12_10_34_43_boletim_cana_portugues_12_2012.pdf webcite
  • [10]Yu Q, Zhuang X, Yuan Z, Wang Q, Qi W, Wang W, Zhang Y, Xu J, Xu H: Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 2010, 101:4895-4899.
  • [11]Flynn B: Eucalyptus: having an impact on the global solid wood industry. 2010. http://www.wri-ltd.com/marketPDFs/Eucalyptus.pdf webcite
  • [12]Zhu JY, Pan XJ: Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 2010, 101:4992-5002.
  • [13]Perlack RD, Wright LL, Turhollow A, Graham RL, Stokes B, Erbach DC: Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge: Oar Ridge National Laboratory; 2005. http://www.ornl.gov/~webworks/cppr/y2001/rpt/123021.pdf webcite
  • [14]Foelkel C: Eucalyptus Online Book. 2010. http://www.eucalyptus.com.br webcite
  • [15]Lima MA, Lavorente GB, da Silva H, Bragatto J, Rezende CA, Bernardinelli OD, de Azevedo ER, Gomez LD, McQueen-Mason S, Labate CA, Polikarpov I: Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production - part 1. Biotechnol Biofuels 2013, 6:75. BioMed Central Full Text
  • [16]Peres AR, Vazquez GH, Cardoso RD: Physiological potential of Brachiaria brizantha cv. Marandu seeds kept in contact with phosphatic fertilizers. Revista Brasileira de Sementes 2012, 34:424-432.
  • [17]Anualpec: Anuário da pecuária brasileira. São Paulo: Instituto FNP; 2011:378.
  • [18]Karia CT, Duarte JB, Araújo ACG: Desenvolvimento de cultivares do gênero Brachiaria (trin.) Griseb. no Brasil. Planaltina, DF: Emprapa; 2006:58.
  • [19]Dowe N, Mcmillan J: SSF experimental protocols - lignocellulosic biomass hydrolysis and fermentation. Golden, CO: National Renewable Energy Laboratory (NREL); 2008. Technical Report TP-510-42630
  • [20]Lima Filho OF, Grothge-Lima MT, Tsai SM: Supressão de patógenos em solos induzida por agentes abióticos: o caso do silício. Informações Agronômicas 1999, 87:8-12.
  • [21]Cennatek: Feasibility of improving biomass combustion through extraction of nutrients. 2011. http://www.ofa.on.ca/uploads/userfiles/files/cennatek%20ofa%20report-feasibility%20of%20improving%20biomass%20combustion%20through%20extraction%20of%20nutrients.pdf webcite
  • [22]Demirbas A: Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energ Combust Sci 2005, 31:171-192.
  • [23]Khan AA, de Jong W, Jansens PJ, Spliethoff H: Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 2009, 90:21-50.
  • [24]Emmel A, Mathias AL, Wypych F, Ramos LP: Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion. Bioresour Technol 2003, 86:105-115.
  • [25]Foelkel C: Casca da árvore do eucalipto. Eucalyptus Online Book 2006. http://www.eucalyptus.com.br webcite
  • [26]Lu H, Liu K: Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar Coast Shelf Sci 2003, 58:587-600.
  • [27]Nlewem KC, Thrash ME Jr: Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass. Bioresour Technol 2010, 101:5426-5430.
  • [28]Goldemberg J: The Brazilian biofuels industry. Biotechnol Biofuels 2008, 1:6. BioMed Central Full Text
  • [29]Bragatto J: Avaliação do potencial da casca de Eucalyptus spp. para produção de bioetanol. PhD thesis. University of São Paulo; 2010:154.
  • [30]McCartney L, Marcus SE, Knox JP: Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 2005, 53:543-546.
  • [31]Marcus S, Verhertbruggen Y, Herve C, Ordaz-Ortiz J, Farkas V, Pedersen H, Willats W, Knox JP: Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 2008, 8:60. BioMed Central Full Text
  • [32]Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG: A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 2010, 153(2):514-525.
  • [33]Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY: Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 2005, 96:1959-1966.
  • [34]Tomás-Pejó E, Alvira P, Ballesteros M, Negro MJ: Pretreatment technologies for lignocellulose-to-bioethanol conversion. In Biofuels. Amsterdam: Elsevier, Academic Press; 2011:149-176.
  • [35]Wickholm K, Larsson PT, Iversen T: Assignment of non-crystalline forms in cellulose I by CP/MAS C-13 NMR spectroscopy. Carbohydrate Res 1998, 312:123-129.
  • [36]Templeton DW, Scarlata CJ, Sluiter JB, Wolfrum EJ: Compositional analysis of lignocellulosic feedstocks. 2. Method uncertainties. J Agric Food Chem 2010, 58:9054-9062.
  • [37]Rezende CA, Lima MA, Maziero P, deAzevedo ER, Garcia W, Polikarpov I: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 2011, 4:54. BioMed Central Full Text
  • [38]Focher B, Marzetti A, Cattaneo M, Beltrame PL, Carniti P: Effects of structural features of cotton cellulose on enzymatic hydrolysis. J Appl Polym Sci 1981, 26:1989-1999.
  • [39]Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ: Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production. J Agric Food Chem 2009, 57:1275-1281.
  • [40]El Hage R, Brosse N, Sannigrahi P, Ragauskas A: Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym Degrad Stabil 2010, 95:997-1003.
  • [41]Sannigrahi P, Miller SJ, Ragauskas AJ: Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr Res 2010, 345:965-970.
  • [42]Foston MB, Hubbell CA, Ragauskas AJ: Cellulose isolation methodology for NMR analysis of cellulose ultrastructure. Materials 2011, 4:1985-2002.
  • [43]Martínez AT, González AE, Valmaseda M, Dale BE, Lambregts MJ, Solid-State HJF: Solid-state NMR studies of lignin and plant polysaccharide degradation by fungi. Holzforschung 1991, 45:49-54.
  • [44]Wickholm K, Larsson PT, Iversen T: Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 1998, 312:123-129.
  • [45]Binder JB, Raines RT: Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci USA 2010, 107:4516-4521.
  • [46]Siqueira G, Bras J, Dufresne A: Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2010, 2:728-765.
  • [47]Reidinger S, Ramsey M, Hartley SE: Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol 2012, 195:699-706.
  • [48]Updegraff DM: Semimicro determination of cellulose in biological materials. Anal Biochem 1969, 32:420-424.
  • [49]Loewus FA: Improvement in anthrone method for determination of carbohydrates. Anal Chem 1952, 24:219-219.
  • [50]Fukushima RS, Hatfield RD: Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 2001, 49:3133-3139.
  • [51]Jones L, Milne JL, Ashford D, McQueen-Mason SJ: Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci 2003, 100:11783-11788.
  • [52]Gomez L, Whitehead C, Barakate A, Halpin C, McQueen-Mason SJ: Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels 2010, 3:23. BioMed Central Full Text
  • [53]Anthon GE, Barrett DM: Determination of reducing sugars with 3-methyl-2-benzothiazolinonehydrazone. Anal Biochem 2002, 305:287-289.
  文献评价指标  
  下载次数:157次 浏览次数:9次