期刊论文详细信息
Chemistry Central Journal
Chemoenzymatic Kinetic resolution of (R)-malathion in aqueous media
Carlos A. Enríquez-Núñez1  Alejandro A. Camacho-Dávila1  Víctor H. Ramos-Sánchez1  Gerardo Zaragoza-Galán1  Lourdes Ballinas-Casarrubias1  David Chávez-Flores1 
[1] Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito No.1 Campus Universitario, Chihuahua, Arboledas 31125, Chihuahua, México
关键词: Malathion;    Resolution;    Enzymatic;    Enantiomer;   
Others  :  1225400
DOI  :  10.1186/s13065-015-0119-y
 received in 2015-01-03, accepted in 2015-07-10,  发布年份 2015
PDF
【 摘 要 】

Background

Malathion (R,S)-diethyl-2-[(dimethoxyphosphorothioyl)sulfanyl]butanedioate is a chiral organophosphorus compound used widely as pesticide for suppression of harmful insects such as mosquitoes. It is well known that in biological systems (R)-malathion is the active enantiomer, therefore a sustainable approach could be the use of only the biologically active enantiomer. The resolution of the commercial racemic mixture to obtain the pure active enantiomer combined with a recycling of the undesired enantiomer through a racemization process could be an attractive alternative to reduce the environmental impact of this pesticide. Thus, this work evaluates the use of four commercially available lipases for enantioselective hydrolysis and separation of malathion enantiomers from the commercial racemic mixture.

Results

Several lipases were methodologically assessed, considering parameters such as enzyme concentration, temperature and reaction rates. Among them, Candida rugosa lipase exhibited the best performance, in terms of enantioselectivity, E = 185 (selective to the (S)-enantiomer). In this way, the desired unreacted (R)-enantiomer was recovered in a 49.42 % yield with an enantiomeric excess of 87 %. The monohydrolized (S)-enantiomer was recovered and racemized in basic media, followed by esterification to obtain the racemic malathion, which was recycled. In this way, an enantioenriched mixture of (R)-malathion was obtained with a conversion of 65.80 % considering the recycled (S)-enantiomer.

Conclusion

This work demonstrated the feasibility of exploiting Candida rugosa lipase to kinetically resolve racemic malathion through an environmentally friendly recycling of the undesired (S)-enantiomer.

【 授权许可】

   
2015 Enríquez-Núñez et al.

【 预 览 】
附件列表
Files Size Format View
20150920012420561.pdf 1528KB PDF download
Fig. 7. 34KB Image download
Fig. 6. 26KB Image download
Fig. 5. 21KB Image download
Fig. 4. 24KB Image download
Fig. 3. 28KB Image download
Fig. 2. 10KB Image download
Fig. 1. 9KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

【 参考文献 】
  • [1]Potec I, Cieslak L, Sledzinski B, Ksycinska H. Simple synthesis of malathion and malaoxon enantiomers, and isomalathion diasteromers: toxicity-configuration relationship. Pest Sci. 1998; 53:165-71.
  • [2]Liu W, Ye J, Jin M. Enantioselectivephytoeffects of chiral pesticides. J Agric Food Chem. 2009; 57:2087-95.
  • [3]Kimihiko Y, Yasuhide T, Katakawa J, Ueno H, Nakamuro K. Kinetic analysis for hydrolysis of malathion by carboxylesterases in wheat kernels. J Health Sci. 2007; 5:507-13.
  • [4]Berkman CE, Thompson CM. Synthesis of chiral malathion and isomalathion. Tetrahedron Lett. 1992; 33:1415-8.
  • [5]Li L, Zhou S, Jin L, Zhang Z, Liu W. Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays. J Chromatogr B Analyt Technol Biomed Life Sci. 2010; 878(17-18):1264-76.
  • [6]Mingjing S, Donghui L, Ziheng D, Ranhong L, Zhiqiang Z, Peng W. Enantioselective behavior of malathion enantiomers in toxicity to beneficial organisms and their dissipation in vegetables and crops. J Hazard Mater. 2012; 237–238:140-6.
  • [7]Zaks A, Klibanov AM. Enzyme-catalyzed processes in organic solvents. Proc. Natl. Acad. Sci. 1985; 82:3192-3196.
  • [8]Aarthy M, Saravanan P, Gowthaman MK, Rose C, Kamini NR. Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. chemical engineering research and design. Chem Eng Res Des. 2014; 92:1591-601.
  • [9]Peiliang X, Suoqin Z, Huayu M, Aijun Z, Xiaoli L, Liangyu Z. Stereoselective synthesis of caffeic acid amides via enzyme-catalyzed asymmetric aminolysis reaction. J Biotechnol. 2013; 168:552-9.
  • [10]Panagiota-Yiolanda S, Athanasios F, Michalis F, Maria K, Maria P, Leonidas GT et al.. Advances in lipase-catalyzed esterification reactions. Biotechnol Adv. 2013; 31:1846-59.
  • [11]Yuan-Yuan Z, Jun-Hong L. Kinetic study of enantioselective hydrolysis of (R, S)-ketoprofen ethyl ester using immobilized T. laibacchii lipase. Biochem Eng J. 2011; 54:40-6.
  • [12]Jyun-Fen C, Pei-Yun W, An-Chi W, Shau-Wei T. Lipase-catalyzed alcoholytic resolution of (R, S)-flurbiprofenyl azolides for preparation of (R)-NO-flurbiprofen ester prodrugs. Process Biochem. 2011; 46:960-5.
  • [13]Tsai SW, Huang CM. Enantioselective synthesis of (S)-suprofen ester prodrugs by lipase in cyclohexane. Enzyme Microb Technol. 1999; 25:682-8.
  • [14]Chavez-Flores D, Salvador JM. Commercially viable resolution of ibuprofen. Biotechnol J. 2009; 4:1222-4.
  • [15]Chavez-Flores D, Salvador JM. Facile conversion of racemic ibuprofen to (S)-ibuprofen. Tetrahedron: Asymmetry. 2012; 23:237-9.
  • [16]Anthonsen T, Helge-Hoff B. Resolution of derivatives of 1,2-propanediol with lipase B from Candida antarctica. Effect of substrate structure, medium, water activity and acyl donor on enantiomeric ratio. Chem Phys Lipids. 1998; 93:199-207.
  • [17]Alves JS, Vieira NS, Cunha AS, Silva AM, Záchia-Ayub MA, Fernandez-Lafuente R et al.. Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Adv. 2014; 4:6863-8.
  • [18]De Paula AV, Nuñez GFM, Silva JDL, De Castro HF, Dos Santos JC. Screening of Food Grade Lipases to be Used in Esterification and Interesterification Reactions of Industrial Interest. Appl Biochem Biotechnol. 2010; 160:1146-56.
  • [19]Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA. Candida antarctica Lipase B Chemically Immobilized on Epoxy-Activated Micro- and Nanobeads: Catalysts for Polyester Synthesis. Biomacromolecules. 2008; 9:463-71.
  • [20]Yoshii K, Tonogai Y, Katakawa J, Ueno H, Nakamuro K. Kinetic Analysis for Hydrolysis of Malathion by Carboxylesterase in wheat Kernels. J Health Sci. 2007; 53(5):507-13.
  • [21]Yu-Chun X, Hui-Zhou L, Jia-Yong C. Candida rugosa lipase catalyzed esterification of racemic ibuprofen with butanol: racemization of R-ibuprofen. Biotechnol Lett. 1998; 20:455-8.
  • [22]Kulshrestha AS, Gao W, Gross RA. Glycerol Copolyesters: Control of Branching and Molecular Weight Using a Lipase Catalyst. Macromolecules. 2005; 38:3193-204.
  • [23]Fazlena A, Kamaruddin M, Zulkali M. Dynamic Kinetic Resolution: Alternative Approach in Optimizing (S)-Ibuprofen Production. Bioprocess Biosyst Eng. 2006; 28:227-33.
  • [24]Gargouri Y, Chahinian H, Moreau H, Ransac S, Verger R. Inactivation of Pancreatic and Gastric Lipase by THL and C12:0-TNB: a Kinetic Study with Emulsified Tributyrin. Biochim Biophys Acta. 1991; 1085:322-8.
  • [25]Arroyo R, Sanchez–Muniz FJ, Cuesta C, Burguillo FJ, Sanchez–Montero JM. Hydrolysis of used Frying Palm Olein and Sunflower Oil Catalyzed by Porcine Pancreatic Lipase. Lipids. 1996; 31:1133-9.
  • [26]Ducret A, Trani M, Lortie R. Lipase-Catalyzed Enantioselective Esterification of Ibuprofen in Organic Solvents under Controlled Water Activity. Enzyme Microb Technol. 1998; 22:212-6.
  • [27]Hiroshi I, Ogata A, Nafie LA, Dukor RK. Structural determination of molecular stereochemistry using a VCD spectroscopy and a conformational code: absolute configuration and solution conformation of a chiral liquid pesticide, (R)-(+)-malathion. Chirality. 2009; 21:172-80.
  • [28]Chen CS, Wu SH, Girdaukas G, Sih GC. Quantitative analyses of biochemical kinetic resolution of enantiomers. Enzyme-catalyzed esterifications in water-organic solvent biphasic systems. J Am Chem Soc. 1987; 109:2812-7.
  • [29]Sun M, Liu D, Dang Z, Li R, Zhou Z, Wang P. Enantioselective behavior of malathion enantiomers in toxicity to beneficial organisms and their dissipation in vegetables and crops. J Hazard Mater. 2012; 237–343:140-6.
  • [30]Sun M, Liu D, Zhou G, Li J, Qiu X, Zhou G et al.. Enantioselective degradation and chiral stability of malathion in environmental samples. J Agric Food Chem. 2012; 60(1):372-9.
  文献评价指标  
  下载次数:81次 浏览次数:39次