期刊论文详细信息
Biological Procedures Online
Mitogen Activated Protein Kinase (MPK) Interacts With Auxin Influx Carrier (OsAux/LAX1) Involved in Auxin Signaling in Plant
Hanhong Bae1  Pratap Parida3  Nibedita Mohanta2  Tapan Kumar Mohanta1 
[1]School of Biotechnology, Yeungnam University, Gyeongsan 712749, Republic of Korea
[2]Department of Biotechnology, North Orissa University, Sri Ramhandra Vihar, Takatpur 757003, Orissa, India
[3]Regional Medical Research Center, NE Region, Indian Council of Medical Research Dibrugarh, Assam, 786001, India
关键词: Yeast two-hybrid;    Phosphorylation;    Mitogen activated protein kinase (MPK);    OsAux/LAX;   
Others  :  1231005
DOI  :  10.1186/s12575-015-0025-7
 received in 2015-09-08, accepted in 2015-10-21,  发布年份 2015
PDF
【 摘 要 】

Background

Mitogen activated protein kinases (MPKs) are serine/threonine protein kinases that contain characteristic T-x-Y motif in the activation loop region. MPKs are important signaling molecules involved in diverse signaling cascades that regulate plant growth, development and stress responses by conducting phosphorylation events in their target proteins. MPKs phosphorylate their target proteins at either S-P/T-P (Serine/Proline/Threonine) amino acid. To understand, if MPKs are involved in the auxin signaling cascade, we identified probable target proteins of MPKs involved in auxin signaling or transport processes.

Results

A genome-wide search of the rice genome database led us to identification of the OsAux/LAX1 gene as a potential downstream target protein of MPKs. In-silico analysis predicted that MPKs interact with OsAux/LAX1 proteins which were validated by a yeast two-hybrid assay that showed OsMPK3, OsMPK4 and OsMPK6 are physically interact with OsAux/LAX1 protein.

Conclusion

The yeast two-hybrid interaction showed that MPKs are directly involved in auxin signaling events in plants. This is the first study to report direct involvement of MPKs in the auxin signaling pathway.

【 授权许可】

   
2015 Mohanta et al.

【 预 览 】
附件列表
Files Size Format View
20151109012644907.pdf 3892KB PDF download
Fig. 8. 22KB Image download
Fig. 7. 23KB Image download
Fig. 6. 23KB Image download
Fig. 5. 98KB Image download
Fig. 4. 141KB Image download
Fig. 3. 112KB Image download
Fig. 2. 43KB Image download
Fig. 1. 56KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H. Identification of new Members of the MAPK Gene Family in Plants Shows Diverse Conserved Domains and Novel Activation Loop Variants. BMC Genomics. 2015; 16:58. BioMed Central Full Text
  • [2]Sinha AK, Jaggi M, Raghuram B, Tuteja N. Mitogen-Activated Protein Kinase Signaling in Plants Under Abiotic Stress. Plant Signal Behav. 2011; 6:196-203.
  • [3]Rodriguez M, Petersen M, Mundy J. Mitogen-Activated Protein Kinase Signaling in Plants. Annu Rev Plant Biol. 2010; 61:621-49.
  • [4]Raina SK, Wankhede DP, Jaggi M, Singh P, Jalmi SK. CrMPK3, a Mitogen Activated Protein Kinase from Catharanthus Roseus and its Possible Role in Stress Induced Biosynthesis of Monoterpenoid Indole Alkaloids. BMC Plant Biol. 2012; 12:1. BioMed Central Full Text
  • [5]Tanoue T, Adachi M, Moriguchi T, Nishida E. A Conserved Docking Motif in MAP Kinases Common to Substrates, Activators and Regulators. Nat Cell Biol. 2000; 2:110-6.
  • [6]Singh P, Mohanta TK, Sinha AK. Unraveling the Intricate Nexus of Molecular Mechanisms Governing Rice Root Development: OsMPK3/6 and Auxin-Cytokinin Interplay. PLoS One. 2015; 10: Article ID e0123620
  • [7]Caffrey DR, O’Neill LA, Shields DC. The Evolution of the MAP Kinase Pathways: Coduplication of Interacting Proteins Leads to new Signaling Cascades. J Mol Evol. 1999; 49:567-82.
  • [8]Dóczi R, Okrész L, Romero AE, Paccanaro A, Bögre L. Exploring the Evolutionary Path of Plant MAPK Networks. Trends Plant Sci. 2012; 17:518-25.
  • [9]Sörensson C, Lenman M, Veide-Vilg J, Schopper S, Ljungdahl T, Grøtli M et al.. MAPKs MPK3 and MPK6 Leads to Identification of new Substrates. Biochem J. 2012; 446:271-8.
  • [10]Wu S, Zhang Y. LOMETS: A Local Meta-Threading-Server for Protein Structure Prediction. Nucleic Acids Res. 2007; 35:3375-82.
  • [11]Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J Biomol NMR. 1996; 8:477-86.
  • [12]Eramian D, Eswar N, Shen M-Y, Sali A. How Well can the Accuracy of Comparative Protein Structure Models be Predicted? Protein Sci. 2008; 17:1881-93.
  • [13]Hollingsworth SA, Karplus PA. A Fresh Look at the Ramachandran Plot and the Occurrence of Standard Structures in Proteins. Biomol Concepts. 2010; 1:271-83.
  • [14]Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of Polypeptide Chain Configurations. J Mol Biol. 1963; 7:95-9.
  • [15]Colovos C, Yeates TO. Verification of Protein Structures: Patterns of Nonbonded Atomic Interactions. Protein Sci. 1993; 2:1511-9.
  • [16]Luthy R, Bowie JU, Eisenberg D. Assessment of Protein Models With Three-Dimensional Profiles. Nature. 1992; 356:83-5.
  • [17]Bowie JU, Ltcy R, Eisenberg D. A Method to Identify Protein That Fold into a Known Three-Dimensional Structure. Science. 1990;253.
  • [18]Tovchigrechko A, Vakser IA. GRAMM-X Public web Server for Protein-Protein Docking. Nucleic Acids Res. 2006; 34:310-4.
  • [19]Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J et al.. Improving Physical Realism, Stereochemistry, and Side-Chain Accuracy in Homology Modeling: Four Approaches That Performed Well in CASP8. Proteins Struct Funct Bioinforma. 2009; 77:114-22.
  • [20]Laskowski RA, Swindells MB. LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery. J Chem Inf Model. 2011; 51:2778-86.
  • [21]Calderon-Villalobos LI, Tan X, Zheng N, Estelle M. Auxin Perception--Structural Insights. Cold Spring Harb Perspect Biol. 2010; 2:a005546.
  • [22]Vanneste S, Friml J. Auxin: A Trigger for Change in Plant Development. Cell. 2009; 136:1005-16.
  • [23]Krupinski P, Jönsson H. Modeling Auxin-Regulated Development. Cold Spring Harb Perspect Biol. 2010; 2:a001560.
  • [24]Lavenus J, Goh T, Roberts I, Guyomarc’h S, Lucas M, De Smet I et al.. Lateral Root Development in Arabidopsis: Fifty Shades of Auxin. Trends Plant Sci. 2013; 18:450-8.
  • [25]Overvoorde P, Fukaki H, Beeckman T. Auxin Control of Root Development. Cold Spring Harb Perspect Biol. 2010; 2:a001537.
  • [26]Woodward AW, Bartel B. Auxin: Regulation, Action, and Interaction. Ann Bot. 2005; 95:707-35.
  • [27]Viaene T, Delwiche CF, Rensing SA, Friml J. Origin and Evolution of PIN Auxin Transporters in the Green Lineage. Trends Plant Sci. 2013; 18:5-10.
  • [28]Mohanta T, Mickael M, Nibedita M, Chidananda NK. In-Silico Identification and Phylogenetic Analysis of Auxin Efflux Carrier Gene Family in Setaria Italica L. African J Biotechnol. 2014; 13:211-25.
  • [29]Mohanta TK, Mohanta N. Genome Wide Identification of Auxin Efflux Carrier Gene Family in Physcomitrella Patens. J Biotechnol Sci. 2013; 1:54-64.
  • [30]Haga K, Sakai T. PIN Auxin Efflux Carriers are Necessary for Pulse-Induced but not Continuous Light-Induced Phototropism in Arabidopsis. Plant Physiol. 2012; 160:763-76.
  • [31]Peer WA, Bandyopadhyay A, Blakeslee JJ, Makam SN, Chen RJ, Masson PH et al.. Variation in Expression and Protein Localization of the PIN Family of Auxin Efflux Facilitator Proteins in Flavonoid Mutants with Altered Auxin Transport in Arabidopsis thaliana. Plant Cell. 2010; 16:1898-911.
  • [32]Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J et al.. The PIN Auxin Efflux Facilitator Network Controls Growth and Patterning in Arabidopsis Roots. Nature. 2005; 433:39-44.
  • [33]Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A et al.. Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science. 1998; 282:2226-30.
  • [34]Friml J, Palme K. Polar Auxin Transport--old Questions and new Concepts? Plant Mol Biol. 2002; 49:273-84.
  • [35]Mohanta TK, Mohanta N, Bae H. Identification and expression analysis of PIN-like (PILS) gene family of rice treated with auxin and cytokinin. Genes. 2015; 6(3):622-40.
  • [36]Feraru E, Feraru MI, Kleine-Vehn J, Martinière A, Mouille G, Vanneste S et al.. PIN Polarity Maintenance by the Cell Wall in Arabidopsis. Curr Biol. 2011; 21:338-43.
  • [37]Kramer EM, Bennett MJ. Auxin Transport: A Field in Flux. Trends Plant Sci. 2006; 11:382-6.
  • [38]Kanchiswamy CN, Mohanta TK, Capuzzo A, Occhipinti A, Verrillo F, Maffei ME et al.. Differential Expression of CPKs and Cytosolic Ca2+ Variation in Resistant and Susceptible Apple Cultivars (Malus x Domestica) in Response to the Pathogen Erwinia Amylovora and Mechanical Wounding. BMC Genomics. 2013; 14:760. BioMed Central Full Text
  • [39]Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH et al.. KinasePhos 2.0: A web Server for Identifying Protein Kinase-Specific Phosphorylation Sites Based on Sequences and Coupling Patterns. Nucleic Acids Res. 2007; 35:588-94.
  • [40]Wankhede DP, Misra M, Singh P, Sinha AK. Rice Mitogen Activated Protein Kinase Kinase and Mitogen Activated Protein Kinase Interaction Network Revealed by In-Silico Docking and Yeast Two-Hybrid Approaches. PLoS One. 2013; 8:7-10.
  • [41]Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K et al.. The TIGR Rice Genome Annotation Resource: Improvements and new Features. Nucleic Acids Res. 2007; 35:D883-7.
  • [42]Bodade RG, Beedkar SD, Manwar AV, Khobragade CN. Homology Modeling and Docking Study of Xanthine Oxidase of Arthrobacter sp. XL26. Int J Biol Macromol. 2010; 47:298-303.
  • [43]Shen M, Sali A. Statistical Potential for Assessment and Prediction of Protein Structures. Protein Sci. 2006; 15:2507-24.
  • [44]Spassov VZ, Flook PK, Yan L. LOOPER: A Molecular Mechanics-Based Algorithm for Protein Loop Prediction. Protein Eng Des Sel. 2008; 21:91-100.
  • [45]Spassov VZ, Yan L, Flook PK. The Dominant Role of Side-Chain Backbone Interactions in Structural Realization of Amino Acid Code. ChiRotor: A Side-Chain Prediction Algorithm Based on Side-Chain Backbone Interactions. Protein Sci. 2007; 16:494-506.
  • [46]Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr. 1993; 26:283-91.
  • [47]Colubri A, Jha AK, Shen M, Sali A, Berry RS, Sosnick TR et al.. Minimalist Representations and the Importance of Nearest Neighbor Effects in Protein Folding Simulations. J Mol Biol. 2006; 363:835-57.
  • [48]Melo F, Sánchez R, Sali A. Statistical Potentials for Fold Assessment. Protein Sci. 2002; 11:430-48.
  • [49]Zhang Y, Gao P, Yuan JS. Plant Protein-Protein Interaction Network and Interactome. Curr Genomics. 2010; 11:40-6.
  • [50]Fukao Y. Protein-Protein Interactions in Plants. Plant Cell Physiol. 2012; 53:617-25.
  • [51]Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C et al.. The Rice Dwarf Virus P2 Protein Interacts With ent-Kaurene Oxidases in Vivo, Leading to Reduced Biosynthesis of Gibberellins and Rice Dwarf Symptoms. Plant Physiol. 2005; 139:1935-45.
  文献评价指标  
  下载次数:37次 浏览次数:17次