期刊论文详细信息
Biology Direct
LINEs of evidence: noncanonical DNA replication as an epigenetic determinant
Ekaterina Belan1 
[1] Genetics Laboratory, Royal University Hospital, Saskatoon, SK S7N 0W8, Canada
关键词: Origins of replication;    Chromatin domains;    Embryonic stem cells;    Cancer;    Pluripotency;    Epigenetics;    Replication timing;    DNA replication;    L1 retrotransposon;    LINE-1;   
Others  :  793356
DOI  :  10.1186/1745-6150-8-22
 received in 2013-05-10, accepted in 2013-09-06,  发布年份 2013
PDF
【 摘 要 】

LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are capable of synthesizing DNA on their own RNA templates by harnessing reverse transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their RT are found to globally influence gene expression profiles, differentiation state, and proliferation capacity of early embryos and many types of cancer, albeit by yet unknown mechanisms. They are essential for the progression of early development and the establishment of a cancer-related undifferentiated state. This raises important questions regarding the functional significance of L1 RT in these cell systems. Massive nuclear L1-linked reverse transcription has been shown to occur in mouse zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication independent. This review argues against this claim with the goal of understanding the nature of this phenomenon and the role of L1 RT in early embryos and cancers. Available L1 data are revisited and integrated with relevant findings accumulated in the fields of replication timing, chromatin organization, and epigenetics, bringing together evidence that strongly supports two new concepts. First, noncanonical replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse transcription is proposed to co-exist with DNA polymerase-dependent replication of the rest of the genome during the same round of DNA replication in embryonic and cancer cell systems. Second, the role of this mechanism is thought to be epigenetic; it might promote transcriptional competence of neighboring genes linked to undifferentiated states through the prevention of tethering of involved L1s to the nuclear periphery. From the standpoint of these concepts, several hitherto inexplicable phenomena can be explained. Testing methods for the model are proposed.

Reviewers

This article was reviewed by Dr. Philip Zegerman (nominated by Dr. Orly Alter), Dr. I. King Jordan, and Dr. Panayiotis (Takis) Benos. For the complete reviews, see the Reviewers’ Reports section.

【 授权许可】

   
2013 Belan; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705050620391.pdf 1431KB PDF download
Figure 3. 70KB Image download
Figure 2. 161KB Image download
Figure 1. 99KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Babushok DV, Kazazian HH Jr: Progress in understanding the biology of the human mutagen LINE-1. Hum Mutat 2007, 28:527-539.
  • [2]Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, et al.: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.
  • [3]Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, et al.: Initial sequencing and comparative analysis of the mouse genome. Nature 2002, 420:520-562.
  • [4]Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera , Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, et al.: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 2004, 428:493-521.
  • [5]Khan H, Smit A, Boissinot S: Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 2006, 16:78-87.
  • [6]Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr: Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 2003, 100:5280-5285.
  • [7]Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV: LINE-1 retrotransposition activity in human genomes. Cell 2010, 141:1159-1170.
  • [8]Beck CR, Garcia-Perez JL, Badge RM, Moran JV: LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 2011, 12:187-215.
  • [9]Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L: Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1987, 1:113-125.
  • [10]Swergold GD: Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 1990, 10:6718-6729.
  • [11]Speek M: Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol Cell Biol 2001, 21:1973-1985.
  • [12]Yang N, Kazazian HH Jr: L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 2006, 13:763-771.
  • [13]Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV: Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 2001, 21:1429-1439.
  • [14]Packer AI, Manova K, Bachvarova RF: A discrete LINE-1 transcript in mouse blastocysts. Dev Biol 1993, 157:281-283.
  • [15]Skowronski J, Fanning TG, Singer MF: Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 1998, 8:1385-1397.
  • [16]Martin SL, Branciforte D: Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol Cell Biol 1993, 13:5383-5392.
  • [17]Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Lower R, Buschmann C, Horn AV, Traub P, Schumann GG: Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res 2008, 36:648-665.
  • [18]Branciforte D, Martin SL: Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol Cell Biol 1994, 14:2584-2592.
  • [19]Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, Kazazian HH Jr: L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 2009, 23:1303-1312.
  • [20]Okudaira N, Goto M, Yanobu-Takanashi R, Tamura M, An A, Abe Y, Kano S, Hagiwara S, Ishizaka Y, Okamura T: Involvement of retrotransposition of long interspersed nucleotide element-1 in skin tumorigenesis induced by 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate. Cancer Sci 2011, 102:2000-2006.
  • [21]Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, Harris RS, Sigmon DF, Casella A, Erlanger B, Wheelan S, Upton KR, Shukla R, Faulkner GJ, Largaespada DA, Kazazian HH Jr: Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 2012, 22:2328-2338.
  • [22]McClintock: Discovery and characterization of transposable elements: the collected papers of Barbara McClintock. New York: Garland Publishing, Inc; 1987.
  • [23]Jordan IK, Rogozin IB, Glazko GV, Koonin EV: Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 2003, 19:68-72.
  • [24]Ottaviani D, Lever E, Takousis P, Sheer D: Anchoring the genome. Genome Biol 2008, 9:201. BioMed Central Full Text
  • [25]Linnemann AK, Platts AE, Krawetz SA: Differential nuclear scaffold/matrix attachment marks expressed genes. Hum Mol Genet 2009, 18:645-654.
  • [26]Spadafora C: A reverse transcriptase-dependent mechanism plays central roles in fundamental biological processes. Syst Biol Reprod Med 2008, 54:11-21.
  • [27]Vitullo P, Sciamanna I, Baiocchi M, Sinibaldi-Vallebona P, Spadafora C: LINE-1 retrotransposon copies are amplified during murine early embryo development. Mol Reprod Dev 2012, 79:118-127.
  • [28]Kuo KW, Sheu HM, Huang YS, Leung WC: Expression of transposon LINE-1 is relatively human-specific and function of the transcripts may be proliferation-essential. Biochem Biophys Res Commun 1998, 253:566-570.
  • [29]Sciamanna I, Landriscina M, Pittoggi C, Quirino M, Mearelli C, Beraldi R, Mattei E, Serafino A, Cassano A, Sinibaldi-Vallebona P, Garaci E, Barone C, Spadafora C: Inhibition of endogenous reverse transcriptase antagonizes human tumor growth. Oncogene 2005, 24:3923-3931.
  • [30]Oricchio E, Sciamanna I, Beraldi R, Tolstonog GV, Schumann GG, Spadafora C: Distinct roles for LINE-1 and HERV-K retroelements in cell proliferation, differentiation and tumor progression. Oncogene 2007, 26:4226-4233.
  • [31]Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C: Expression of LINE-1 retroposons is essential for mutine preimplantation development. Mol Reprod Dev 2006, 73:279-287.
  • [32]Nelson PN, Carnegie PR, Martin J, Davari Ejtehadi H, Hooley P, Roden D, Rowland-Jones S, Warren P, Astley J, Murray PG: Demystified. Human endogenous retroviruses. Mol Pathol 2003, 56:11-18.
  • [33]Evsikov AV, de Vries WN, Peaston AE, Radford EE, Fancher KS, Chen FH, Blake JA, Bult CJ, Latham KE, Solter D, Knowles BB: Systems biology of the 2-cell mouse embryo. Cytogenet Genome Res 2004, 105:240-250.
  • [34]Peaston AE, Knowles BB, Hutchison KW: Genome plasticity in the mouse oocyte and early embryo. Biochem Soc Trans 2007, 35:618-622.
  • [35]Pittoggi C, Sciamanna I, Mattei E, Beraldi R, Lobascio AM, Mai A, Quaglia MG, Lorenzini R, Spadafora C: Role of endogenous reverse transcriptase in murine early embryo development. Mol Reprod Dev 2003, 66:225-236.
  • [36]Spadafora C: Endogenous reverse transcriptase: a mediator of cell proliferation and differentiation. Cytogenet Genome Res 2004, 105:346-350.
  • [37]Landriscina M, Fabiano A, Altamura S, Bagala C, Piscazzi A, Cassano A, Spadafora C, Giorgino F, Barone C, Cignarelli M: Reverse transcriptase inhibitors down-regulate cell proliferation in vitro and in vivo and restore thyrotropin signaling and iodine uptake in human thyroid anaplastic carcinoma. J Clin Endocrinol Metab 2005, 90:5663-5671.
  • [38]Mangiacasale R, Pittoggi C, Sciamanna I, Careddu A, Mattei E, Lorenzini R, Travaglini L, Landriscina M, Barone C, Nervi C, Lavia P, Spadafora C: Exposure of normal and transformed cells to nevirapine, a reverse transcriptase inhibitor, reduces cell growth and promotes differentiation. Oncogene 2003, 22:2750-2761.
  • [39]Jones RB, Garrison KE, Wong JC, Duan EH, Nixon DF, Ostrowski MA: Nucleoside analogue reverse transcriptase inhibitors differentially inhibit human LINE-1 retrotransposition. PLoS One 2008, 3:e1547.
  • [40]Dai L, Huang Q, Boeke JD: Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 2011, 12:18. BioMed Central Full Text
  • [41]Kigami D, Minami N, Takayama H, Imai H: MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 2003, 68:651-654.
  • [42]Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D: Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 2009, 16:164-180.
  • [43]Prak ET, Kazazian HH Jr: Mobile elements in the human genome. Nat Rev Genet 2000, 1:134-144.
  • [44]Whitelaw E, Martin DIK: Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 2001, 27:361-365.
  • [45]Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schübeler D, Gilbert DM: Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008, 6:e245.
  • [46]Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM: Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 2010, 20:155-169.
  • [47]Hand R: Eucaryotic DNA: organization of the genome for replication. Cell 1978, 15:317-325.
  • [48]Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I: Global organization of replication time zones of the mouse genome. Genome Res 2008, 18:1562-1570.
  • [49]Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM: Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 2010, 20:761-770.
  • [50]Takebayashi SI, Ryba T, Gilbert DM: Developmental control of replication timing defines a new breed of chromosomal domains with a novel mechanism of chromatin unfolding. Nucleus 2012, 3:1-8.
  • [51]Hiratani I, Takebayashi S, Lu J, Gilbert DM: Replication timing and transcriptional control: beyond cause and effect – part II. Curr Opin Genet Dev 2009, 19:142-149.
  • [52]Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, Antony C, Almouzni G, Gilbert DM, Buonomo SB: Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 2012, 31:3678-3690.
  • [53]Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H: Rif1 regulates the replication timing domains on the human genome. EMBO J 2012, 31:3667-3677.
  • [54]Adams IR, McLaren A: Identification and characterisation of mRif1: a mouse telomere-associated protein highly expressed in germ cells and embryo-derived pluripotent stem cells. Dev Dyn 2004, 229:733-744.
  • [55]Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH: The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006, 38:431-440.
  • [56]Garcia-Perez JL, Marchetto MCN, Muotri AR, Coufal NG, Gage FH, O’Shea KS, Moran JV: LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 2007, 16:1569-1577.
  • [57]Macia A, Muñoz-Lopez M, Cortes JL, Hastings RK, Morell S, Lucena-Aguilar G, Marchal JA, Badge RM, Garcia-Perez JS: Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 2011, 31:300-316.
  • [58]Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP: Global chromatin architecture reflects pluripotency and lineage commitment in early mouse embryo. PLoS One 2010, 5:e10531.
  • [59]Ferreira J, Carmo-Fonseca M: Genome replication in early mouse embryos follows a defined temporal and spatial order. J Cell Sci 1997, 110:889-897.
  • [60]Mitalipov S, Wolf D: Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol 2009, 114:185-199.
  • [61]Penzkofer T, Dandekar T, Zemojtel T: L1Base: from functional annotation to prediction of active LINE-1 elements. Nucleic Acids Res 2005, 33:498-500.
  • [62]da Costa LF: Return of de-differentiation: why cancer is a developmental disease. Curr Opin Oncol 2001, 13:58-62.
  • [63]Ryba T, Battaglia D, Chang BH, Shirley JW, Buckley Q, Pope BD, Devidas M, Druker BJ, Gilbert DM: Abnormal developmental control of replication timing domains in pediatric acute lymphoblastic leukemia. Genome Res 2012, 22:1833-1844.
  • [64]Andrews PW: From teratocarcinomas to embryonic stem cells. Philos Trans R Soc Lond B Biol Sci 2002, 357:405-417.
  • [65]Mintz B, Illmensee K: Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Nat Acad Sci USA 1975, 72:3585-3589.
  • [66]Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, Glass JL, Attreed M, Avner P, Wutz A, Barillot E, Greally JM, Voinnet O, Heard E: LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 2010, 141:956-969.
  • [67]Chueh AC, Northrop EL, Brettingham-Moore KH, Choo KH, Wong LH: LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet 2009, 5:e1000354.
  • [68]Martin SL: Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 1991, 11:4804-4807.
  • [69]Hohjoh H, Singer MF: Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 1996, 15:630-639.
  • [70]Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, Gilbert N: Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 2010., 6
  • [71]Kulpa DA, Moran JV: Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet 2005, 14:3237-3248.
  • [72]Kulpa DA, Moran JV: Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 2006, 13:655-660.
  • [73]Pavlov YI, Shcherbakova PV, Rogozin IB: Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol 2006, 255:41-132.
  • [74]Blackburn EH, Greider CW, Szostak JW: Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006, 12:1133-1138.
  • [75]Kopera HC, Moldovan JB, Morrish TA, Garcia-Perez JL, Moran VJ: Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc Natl Acad Sci U S A 2011, 108:20345-20350.
  • [76]Howlett SK, Bolton VN: Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. J Embryol Exp Morphol 1985, 87:175-206.
  • [77]Luthardt FW, Donahue RP: Pronuclear DNA synthesis in mouse eggs. An autoradiographic study. Exp Cell Res 1973, 82:143-151.
  • [78]Bouniol-Baly C, Nguyen E, Besombes D, Debey P: Dynamic organization of DNA replication in one-cell mouse embryos: relationship to transcriptional activation. Exp Cell Res 1997, 236:201-211.
  • [79]Schabronath J, Gärtner K: Paternal influence on timing of pronuclear DNA synthesis in naturally ovulated and fertilized mouse eggs. Biol Reprod 1988, 38:744-749.
  • [80]Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H, Dantec C, Marin JM, Lemaitre JM: Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 2012, 19:837-844.
  • [81]Gilbert DM: In search of the holy replicator. Nat Rev Mol Cell Biol 2004, 5:848-855.
  • [82]Gilbert DM, Miyazawa H, DePamphilis ML: Site-specific initiation of DNA replication in Xenopus egg requires nuclear structure. Mol Cell Biol 1995, 15:2942-2954.
  • [83]Ohta S, Tatsumi Y, Fujita M, Tsurimoto T, Obuse C: The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J Biol Chem 2003, 278:41535-41540.
  • [84]Bell SP: The origin recognition complex: from simple origins to complex functions. Genes Dev 2002, 16:659-672.
  • [85]Sasaki T, Gilbert DM: The many faces of the origin recognition complex. Curr Opin Cell Biol 2007, 19:337-343.
  • [86]Prasanth SG, Shen Z, Prasanth KV, Stillman B: Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc Natl Acad Sci U S A 2010, 107:15093-15098.
  • [87]Chakraborty A, Shen Z, Prasanth SG: “ORCanization” on heterochromatin: linking DNA replication initiation to chromatin organization. Epigenetics 2011, 6:665-670.
  • [88]Boulikas T: Common structural features of replication origins in all life forms. J Cell Biochem 1996, 60:297-316.
  • [89]Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, Brison O, Debatisse M: Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 2008, 455:557-560.
  • [90]Bode J, Winkelmann S, Götze S, Spiker S, Tsutsui K, Bi CAKP, Benham C: Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J Mol Biol 2006, 358:597-613.
  • [91]Linnemann AK, Krawetz SA: Silencing by nuclear matrix attachment distinguishes cell-type specificity: association with increased proliferation capacity. Nucleic Acids Res 2009, 37:2779-2788.
  • [92]Berezney R, Dubey DD, Huberman JA: Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 2000, 108:471-484.
  • [93]Segal E, Widom J: What controls nucleosome positions? Trends Genet 2009, 25:335-343.
  • [94]Lubelsky Y, Sasaki T, Kuipers MA, Lucas I, Le Beau MM, Carignon S, Debatisse M, Prinz JA, Dennis JH, Gilbert DM: Pre-replication complex proteins assemble at regions of low nucleosome occupancy within the Chinese hamster dihydrofolate reductase initiation zone. Nucleic Acids Res 2011, 39:3141-3155.
  • [95]Howell R, Usdin K: The ability to form intrastrand tetraplexes is an evolutionarily conserved feature of the 3′ end of L1 retrotransposons. Mol Biol Evol 1997, 14:144-155.
  • [96]Smit AF, Tóth G, Riggs AD, Jurka J: Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 1995, 246:401-417.
  • [97]Halder K, Halder R, Chowdhury S: Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals. Mol Biosyst 2009, 5:1703-1712.
  • [98]Minc E, Courvalin JC, Buendia B: HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet 2000, 90:279-284.
  • [99]Brown JP, Bullwinkel J, Baron-Lühr B, Billur M, Schneider P, Winking H, Singh PB: HP1gamma function is required for male germ cell survival and spermatogenesis. Epigenetics Chromatin 2010, 3:9. BioMed Central Full Text
  • [100]Ye Q, Worman HJ: Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem 1996, 271:14653-14656.
  • [101]Kourmouli N, Theodoropoulos PA, Dialynas G, Bakou A, Politou AS, Cowell IG, Singh PB, Georgatos SD: Dynamic association of heterochromatin protein 1 with the nuclear envelope. EMBO J 2000, 19:6558-6568.
  • [102]Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P, Jenuwein T: The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J 2005, 24:800-812.
  • [103]Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 2007, 448:553-560.
  • [104]Teneng I, Montoya-Durango DE, Quertermous JL, Lacy ME, Ramos KS: Reactivation of L1 retrotransposon by benzo(a)pyrene involves complex genetic and epigenetic regulation. Epigenetics 2011, 6:355-367.
  • [105]Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
  • [106]Ruault M, Dubarry M, Taddei A: Re-positioning genes to the nuclear envelope in mammalian cells: impact on transcription. Trends Genet 2008, 24:574-581.
  • [107]Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H: Establishment of transcriptional competence in early and late S phase. Nature 2002, 420:198-202.
  • [108]Lande-Diner L, Zhang J, Cedar H: Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol Cell 2009, 34:767-774.
  • [109]McNairn AJ, Gilbert DM: Epigenomic replication: linking epigenetics to DNA replication. Bioessays 2003, 25:647-656.
  • [110]Luo L, Gassman KL, Petell LM, Wilson CL, Bewersdorf J, Shopland LS: The nuclear periphery of embryonic stem cells is a transcriptionally permissive and repressive compartment. J Cell Sci 2009, 122:3729-3737.
  • [111]Easwaran HP, Baylin SB: Role of nuclear architecture in epigenetic alterations in cancer. Cold Spring Harb Symp Quant Biol 2010, 75:507-515.
  • [112]O’Keefe RT, Henderson SC, Spector DL: Dynamic organization of DNA replication in mammalian cell nuclei: spatially and temporally defined replication of chromosome-specific alpha-satellite DNA sequences. J Cell Biol 1992, 116:1095-1110.
  • [113]Zink D, Fischer AH, Nickerson JA: Nuclear structure in cancer cells. Nat Rev Cancer 2004, 4:677-687.
  • [114]Harris CR, Normart R, Yang Q, Stevenson E, Haffty BG, Ganesan S, Cordon-Cardo C, Levine AJ, Tang LH: Association of nuclear localization of a long interspersed nuclear element-1 protein in breast tumors with poor prognostic outcomes. Genes Cancer 2010, 1:115-124.
  • [115]Gilbert DM: Cell fate transitions and the replication timing decision point. J Cell Biol 2010, 191:899-903.
  • [116]Pittoggi C, Renzi L, Zaccagnini G, Cimini D, Degrassi F, Giordano R, Magnano AR, Lorenzini R, Lavia P, Spadafora C: A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci 1999, 112:3537-3548.
  • [117]Pittoggi C, Zaccagnini G, Giordano R, Magnano AR, Baccetti B, Lorenzini R, Spadafora C: Nucleosomal domains of mouse spermatozoa chromatin as potential sites for retroposition and foreign DNA integration. Mol Reprod Dev 2000, 56:248-251.
  • [118]Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV: Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev 2006, 20:210-224.
  • [119]Callahan KE, Hickman AB, Jones CE, Ghirlando R, Furano AV: Polymerization and nucleic acid-binding properties of human L1 ORF1 protein. Nucleic Acids Res 2012, 40:813-827.
  • [120]Martin SL, Bushman FD: Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 2001, 21:467-475.
  • [121]Martin SL: Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 2010, 7:706-711.
  • [122]Hohjoh H, Singer MF: Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 1997, 16:6034-6043.
  • [123]Cost GJ, Boeke JD: Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 1998, 37:18081-18093.
  • [124]Cost GJ, Feng Q, Jacquier A, Boeke JD: Human L1 element target-primed reverse transcription in vitro. EMBO J 2002, 21:5899-5910.
  • [125]Martin SL, Cruceanu M, Branciforte D, Wai-Iun Li P, Kwok SC, Hodges RS, Williams MC: LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 2005, 348:549-561.
  • [126]Martin SL, Bushman D, Wang F, Li PW, Walker A, Cummiskey J, Brancifirte D, Williams MC: A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Res 2008, 36:5845-5854.
  • [127]An W, Han JS, Wheelan SJ, Davis ES, Coombes CE, Ye P, Triplett C, Boeke JD: Active retrotransposition by a synthetic L1 element in mice. Proc Natl Acad Sci USA 2006, 103:18662-18667.
  • [128]Jurka J, Kapitonov VV: Sectorial mutagenesis by transposable elements. Genetica 1999, 107:239-248.
  • [129]Pavlícek A, Jabbari K, Paces J, Paces V, Hejnar JV, Bernardi G: Similar integration but different stability of Alus and LINEs in the human genome. Gene 2001, 276:39-45.
  • [130]Boissinot S, Entezam A, Young L, Munson PJ, Furano AV: The insertional history of an active family of L1 retrotransposons in humans. Genome Res 2004, 14:1221-1231.
  • [131]Abrusán G, Krambeck HJ: The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model. J Mol Evol 2006, 63:484-492.
  • [132]Graham T, Boissinot S: The genomic distribution of L1 elements: the role of insertion bias and natural selection. J Biomed Biotechnol 2006, 2006:75327.
  • [133]Jurka J, Kohany O, Pavlicek A, Kapitonov VV, Jurka MV: Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci U S A 2004, 101:1268-1272.
  • [134]Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD: Molecular archeology of L1 insertions in the human genome. Genome Biol 2002., 3research0052
  • [135]Yagil G: Paranemic structures of DNA and their role in DNA unwinding. Crit Rev Biochem Mol Biol 1991, 26:475-559.
  • [136]van den Hurk JAJM, Meij IC, Seleme MC, Kano H, Nikopoulos K, Hoefsloot LH, Sistermans EA, de Wijs IJ, Mukhopadhyay A, Plomp AS, de Jong PT, Kazazian HH, Cremers FP: L1 retrotransposition can occur early in human embryonic development. Hum Mol Genet 2007, 16:1587-1592.
  • [137]Piskareva O, Schmatchenko V: DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro. FEBS Lett 2006, 580:661-668.
  • [138]Jurka J: Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 1997, 94:1872-1877.
  • [139]Belancio VP, Whelton M, Deininger P: Requirements for polyadenilation at the 3′ end of LINE-1 elements. Gene 2007, 390:98-107.
  • [140]Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P: Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res 2010, 38:3909-3922.
  • [141]Perepelitsa-Belancio V, Deininger P: RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat Genet 2003, 35:363-366.
  • [142]Belancio VP, Hedges DJ, Deininger P: LINE-1 RNA splicing and influences on mammalian gene expression. Nucleic Asids Res 2006, 34:1512-1521.
  • [143]Ergün S, Buschmann C, Heukeshoven J, Dammann K, Schnieders F, Lauke H, Chalajour F, Kilic N, Strätling WH, Schumann GG: Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J Biol Chem 2004, 279:27753-27763.
  • [144]Trelogan SA, Martin SL: Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc Natl Acad Sci USA 1995, 92:1520-1524.
  • [145]van der Heijden GW, Bortvin A: Transient relaxation of transposon silencing at the onset of mammalian meiosis. Epigenetics 2009, 4:76-79.
  • [146]Soper SFC, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A: Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 2008, 15:285-297.
  • [147]Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB: Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 2004, 7:597-606.
  • [148]Wissing S, Muñoz-Lopez M, Macia A, Yang Z, Montano M, Collins W, Garcia-Perez JL, Moran JV, Greene WC: Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum Mol Genet 2012, 21:208-218.
  • [149]Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH: L1 retrotransposition in human neural progenitor cells. Nature 2009, 460:1127-1131.
  • [150]Skotheim RI, Lind GE, Monni O, Nesland JM, Abeler VM, Fosså SD, Duale N, Brunborg G, Kallioniemi O, Andrews PW, Lothe RA: Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res 2005, 65:5588-5598.
  • [151]Deragon JM, Sinnett D, Labuda D: Reverse transcriptase activity from human embryonal carcinoma cells NTera2D1. EMBO J 1990, 9:3363-3368.
  • [152]Asch HL, Eliacin E, Fanning TG, Connolly JL, Bratthauer G, Asch BB: Comparative expression of the LINE-1 p40 protein in human breast carcinomas and normal breast tissues. Oncol Res 1996, 8:239-247.
  • [153]Florl AR, Löwer R, Schmitz-Dräger BJ, Schulz WA: DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 1999, 80:1312-1321.
  • [154]Roman-Gomez J, Jimenez-Velasco A, Agirre X, Cervantes F, Sanchez J, Garate L, Barrios M, Castillejo JA, Navarro G, Colomer D, Prosper F, Heiniger A, Torres A: Promoter hypomethylation of the LINE-1 transposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 2005, 24:7213-7223.
  • [155]Zhu W, Kuo D, Nathanson J, Satoh A, Pao GM, Yeo GW, Bryant SV, Voss SR, Gardiner DM, Hunter T: Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration. Dev Growth Differ 2012, 54:673-685.
  • [156]Bliakher LI: Investigation of repeated regeneration in amphibians. Moscow; 1936. [Proceedings of the Institute of Experimental Morphogenesis: vol 5] in Russian
  • [157]Han JS, Shao S: Circular retrotransposition products generated by a LINE retrotransposon. Nucleic Acids Res 2012, 40:10866-10877.
  • [158]Schmidt H, Taubert H, Lange H, Kriese K, Schmitt WD, Hoffmann S, Bartel F, Hauptmann S: Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes. Oncol Rep 2009, 22:393-400.
  • [159]Lorthongpanich C, Solter D, Lim CY: Nuclear reprogramming in zygotes. Int J Dev Biol 2010, 54:1631-1640.
  • [160]Goodier JL, Ostertag EM, Du K, Kazazian HH Jr: A novel active L1 retrotransposon subfamily in the mouse. Genome Res 2001, 11:1677-1685.
  • [161]Norio P, Schildkraut CL: Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoS Biol 2004, 2:e152.
  • [162]Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL: Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 2005, 20:575-587.
  • [163]Wang X, Takebayashi S, Bernardin E, Gilbert DM, Chella R, Guan J: Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization. Biomed Microdevices 2012, 14:443-451.
  • [164]Landriscina M, Fabiano A, Lombardi V, Santodirocco M, Piscazzi A, Fersini A, De Vis K, Barone C, Cignarelli M: Nevirapine toxicity in non-HIV cancer patients. Chemotherapy 2008, 54:475-478.
  • [165]Landriscina M, Spadafora C, Cignarelli M, Barone C: Anti-tumor activity of non-nucleosidic reverse transcriptase inhibitors. Curr Pharm Des 2007, 13:737-747.
  文献评价指标  
  下载次数:28次 浏览次数:17次