期刊论文详细信息
Cell & Bioscience
Embryonic stem cells shed new light on the developmental roles of p53
Jing Huang1  Yunlong He1  Min Hwa Shin1 
[1] Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Room 3140A, Bethesda 20814, MD, USA
关键词: Cancer;    Embryonic stem cells;    Development;    p53;   
Others  :  791459
DOI  :  10.1186/2045-3701-3-42
 received in 2013-07-01, accepted in 2013-08-28,  发布年份 2013
PDF
【 摘 要 】

The viability and subtle developmental defects of p53 knockout mice suggest that p53 does not play major role in development. However, contradictory evidence also exists. This discrepancy mainly results from the lack of molecular and cellular mechanisms and the general fact that p53 activation requires stresses. Recent studies of p53 in mouse and human ES cells and induced pluripotent stem (iPS) cells shed new light on the mechanisms of the developmental roles of p53. This review summarizes these new studies that support the developmental roles of p53, highlights the possible underlying molecular mechanisms, and discusses the potential relationship between the developmental roles and the tumor suppressive function of p53. In summary, the molecular mechanisms underlying the developmental roles of p53 are emerging, and the developmental roles and tumor suppressive function of p53 may be closely related.

【 授权许可】

   
2013 Shin et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705013715427.pdf 533KB PDF download
Figure 3. 100KB Image download
Figure 2. 106KB Image download
Figure 1. 56KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ: Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci U S A 1979, 76(5):2420-2424.
  • [2]Crawford LV, Pim DC, Gurney EG, Goodfellow P, Taylor-Papadimitriou J: Detection of a common feature in several human tumor cell lines–a 53,000-dalton protein. Proc Natl Acad Sci U S A 1981, 78(1):41-45.
  • [3]Reich NC, Levine AJ: Specific interaction of the SV40 T antigen-cellular p53 protein complex with SV40 DNA. Virology 1982, 117(1):286-290.
  • [4]Oren M, Levine AJ: Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci U S A 1983, 80(1):56-59.
  • [5]Oren M, Bienz B, Givol D, Rechavi G, Zakut R: Analysis of recombinant DNA clones specific for the murine p53 cellular tumor antigen. EMBO J 1983, 2(10):1633-1639.
  • [6]Eliyahu D, Raz A, Gruss P, Givol D, Oren M: Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 1984, 312(5995):646-649.
  • [7]Hinds P, Finlay C, Levine AJ: Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 1989, 63(2):739-746.
  • [8]Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989, 57(7):1083-1093.
  • [9]Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci U S A 1989, 86(22):8763-8767.
  • [10]Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ: Gain of function mutations in p53. Nat Genet 1993, 4(1):42-46.
  • [11]Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992, 356(6366):215-221.
  • [12]Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T: A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 1995, 10(2):175-180.
  • [13]Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR: High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 1995, 5(8):931-936.
  • [14]Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A, Soligo S, Dupont S, Piccolo S: Integration of TGF-beta and Ras/MAPK signaling through p53 phosphorylation. Science 2007, 315(5813):840-843.
  • [15]Takebayashi-Suzuki K, Funami J, Tokumori D, Saito A, Watabe T, Miyazono K, Kanda A, Suzuki A: Interplay between the tumor suppressor p53 and TGF beta signaling shapes embryonic body axes in Xenopus. Development 2003, 130(17):3929-3939.
  • [16]Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S: Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 2003, 113(3):301-314.
  • [17]Tedeschi A, Di Giovanni S: The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 2009, 10(6):576-583.
  • [18]Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer A, Donehower LA, Levine AJ: Mice with reduced levels of p53 protein exhibit the testicular giant-cell degenerative syndrome. Proc Natl Acad Sci U S A 1993, 90(19):9075-9079.
  • [19]Saifudeen Z, Liu J, Dipp S, Yao X, Li Y, McLaughlin N, Aboudehen K, El-Dahr SS: A p53-Pax2 pathway in kidney development: implications for nephrogenesis. PLoS One 2012, 7(9):e44869.
  • [20]Tun HW, Marlow LA, Von Roemeling CA, Cooper SJ, Kreinest P, Wu K, Luxon BA, Sinha M, Anastasiadis PZ, Copland JA: Pathway signature and cellular differentiation in clear cell renal cell carcinoma. PLoS One 2010, 5(5):e10696.
  • [21]Montes de Oca Luna R, Wagner DS, Lozano G: Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995, 378(6553):203-206.
  • [22]Jones SN, Roe AE, Donehower LA, Bradley A: Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995, 378(6553):206-208.
  • [23]Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, Hiddingh S, Thanasoula M, Kulkarni A, Yang Q, et al.: 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol 2010, 17(6):688-695.
  • [24]Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA, Harris CC, Deng CX: Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 2001, 28(3):266-271.
  • [25]Hakem R, de la Pompa JL, Elia A, Potter J, Mak TW: Partial rescue of Brca1 (5-6) early embryonic lethality by p53 or p21 null mutation. Nat Genet 1997, 16(3):298-302.
  • [26]Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A: Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 1997, 11(10):1226-1241.
  • [27]Lim DS, Hasty P: A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 1996, 16(12):7133-7143.
  • [28]Kim JM, Nakao K, Nakamura K, Saito I, Katsuki M, Arai K, Masai H: Inactivation of Cdc7 kinase in mouse ES cells results in S-phase arrest and p53-dependent cell death. EMBO J 2002, 21(9):2168-2179.
  • [29]Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K, Itoh B, Wang J, Komatsu Y, Yang YR, et al.: Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011, 17(8):944-951.
  • [30]Morgado-Palacin L, Llanos S, Serrano M: Ribosomal stress induces L11- and p53-dependent apoptosis in mouse pluripotent stem cells. Cell Cycle 2012, 11(3):503-510.
  • [31]Lee DF, Su J, Ang YS, Carvajal-Vergara X, Mulero-Navarro S, Pereira CF, Gingold J, Wang HL, Zhao R, Sevilla A, et al.: Regulation of Embryonic and Induced Pluripotency by Aurora Kinase-p53 Signaling. Cell Stem Cell 2012, 11(2):179-194.
  • [32]Ruland J, Sirard C, Elia A, MacPherson D, Wakeham A, Li L, de la Pompa JL, Cohen SN, Mak TW: p53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking tsg101. Proc Natl Acad Sci U S A 2001, 98(4):1859-1864.
  • [33]Hu W, Feng Z, Teresky AK, Levine AJ: p53 regulates maternal reproduction through LIF. Nature 2007, 450(7170):721-724.
  • [34]Levine AJ, Tomasini R, McKeon FD, Mak TW, Melino G: The p53 family: guardians of maternal reproduction. Nat Rev Mol Cell Biol 2011, 12(4):259-265.
  • [35]Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, Elvin JA, Bronson RT, Crum CP, McKeon F: p63 protects the female germ line during meiotic arrest. Nature 2006, 444(7119):624-628.
  • [36]Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, et al.: TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 2008, 22(19):2677-2691.
  • [37]Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S: p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nat Med 1996, 2(5):577-580.
  • [38]Choi J, Donehower LA: p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci 1999, 55(1):38-47.
  • [39]Hall PA, Lane DP: Tumor suppressors: a developing role for p53? Curr Biol 1997, 7(3):R144-R147.
  • [40]Zhang X, Huang J: Integrative genome-wide approaches in embryonic stem cell research. Integr Biol (Camb) 2010, 2(10):510-516.
  • [41]Li M, He Y, Feng X, Huang J: Genome-wide studies of the transcriptional regulation by p53. Biochim Biophys Acta 2012, 1819(7):684-687.
  • [42]Molchadsky A, Shats I, Goldfinger N, Pevsner-Fischer M, Olson M, Rinon A, Tzahor E, Lozano G, Zipori D, Sarig R, et al.: p53 plays a role in mesenchymal differentiation programs, in a cell fate dependent manner. PLoS One 2008, 3(11):e3707.
  • [43]Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE, Stein GS, Lian JB, Jones SN: Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 2006, 172(6):909-921.
  • [44]MacCallum DE, Hupp TR, Midgley CA, Stuart D, Campbell SJ, Harper A, Walsh FS, Wright EG, Balmain A, Lane DP, et al.: The p53 response to ionising radiation in adult and developing murine tissues. Oncogene 1996, 13(12):2575-2587.
  • [45]Gottlieb E, Haffner R, King A, Asher G, Gruss P, Lonai P, Oren M: Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 1997, 16(6):1381-1390.
  • [46]Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR, Chin DM, Bacus SS, Stark GR, Gudkov AV: Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 1997, 16(6):1391-1400.
  • [47]Tam WL, Lim CY, Han J, Zhang J, Ang YS, Ng HH, Yang H, Lim B: T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 2008, 26(8):2019-2031.
  • [48]Cao Y: Regulation of germ layer formation by pluripotency factors during embryogenesis. Cell & bioscience 2013, 3(1):15. BioMed Central Full Text
  • [49]Menendez S, Goh AM, Camus S, Ng KW, Kua N, Badal V, Lane DP: MDM4 downregulates p53 transcriptional activity and response to stress during differentiation. Cell Cycle 2011, 10(7):1100-1108.
  • [50]Ungewitter E, Scrable H: Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev 2010, 24(21):2408-2419.
  • [51]Chang S, Biswas K, Martin BK, Stauffer S, Sharan SK: Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. J Clin Invest 2009, 119(10):3160-3171.
  • [52]Liu JC, Guan X, Ryan JA, Rivera AG, Mock C, Agarwal V, Letai A, Lerou PH, Lahav G: High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 2013. doi:10.1016/j.stem.2013.07.018 [Epub ahead of print]
  • [53]Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J, Li J, Song Z, Qu X, Zhou P, et al.: Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 2007, 282(8):5842-5852.
  • [54]Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM: ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 1998, 8(3):145-155.
  • [55]De Vries A, Flores ER, Miranda B, Hsieh HM, Van Oostrom CT, Sage J, Jacks T: Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci U S A 2002, 99(5):2948-2953.
  • [56]Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 2005, 7(2):165-171.
  • [57]Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J: A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci U S A 2010, 107(1):69-74.
  • [58]Li M, Huang J: A new puzzling role of p53 in mouse embryonic stem cells. Cell Cycle 2010, 9(9):1669-1670.
  • [59]Li M, He Y, Dubois W, Wu X, Shi J, Huang J: Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 2012, 46(1):30-42.
  • [60]Tsai WW, Nguyen TT, Shi Y, Barton MC: p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Mol Cell Biol 2008, 28(17):5139-5146.
  • [61]Nguyen TT, Cho K, Stratton SA, Barton MC: Transcription factor interactions and chromatin modifications associated with p53-mediated, developmental repression of the alpha-fetoprotein gene. Mol Cell Biol 2005, 25(6):2147-2157.
  • [62]Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL: Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 1999, 13(19):2490-2501.
  • [63]Laptenko O, Prives C: Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 2006, 13(6):951-961.
  • [64]Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, Durham T, Miri M, Deshpande V, De Jager PL, et al.: Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 2013, 152(3):642-654.
  • [65]Melo CA, Drost J, Wijchers PJ, van de Werken H, De Wit E, Oude Vrielink JA, Elkon R, Melo SA, Leveille N, Kalluri R, et al.: eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 2013, 49(3):524-535.
  • [66]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, et al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459(7243):108-112.
  • [67]Jain AK, Allton K, Iacovino M, Mahen E, Milczarek RJ, Zwaka TP, Kyba M, Barton MC: p53 regulates cell cycle and microRNAs to promote differentiation of human embryonic stem cells. PLoS Biol 2012, 10(2):e1001268.
  • [68]Song H, Chung SK, Xu Y: Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 2010, 6(1):80-89.
  • [69]Zhao T, Xu Y: p53 and stem cells: new developments and new concerns. Trends Cell Biol 2010, 20(3):170-175.
  • [70]Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD: New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 2007, 448(7150):196-199.
  • [71]Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Pedersen RA, Ahrlund-Richter L, et al.: Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007, 448(7150):191-195.
  • [72]Choi YJ, Lin CP, Ho JJ, He X, Okada N, Bu P, Zhong Y, Kim SY, Bennett MJ, Chen C, et al.: miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol 2011, 13(11):1353-1360.
  • [73]Vousden KH, Prives C: Blinded by the Light: The Growing Complexity of p53. Cell 2009, 137(3):413-431.
  • [74]Deng C, Zhang P, Harper JW, Elledge SJ, Leder P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995, 82(4):675-684.
  • [75]Nakano K, Vousden KH: PUMA, a Novel Proapoptotic Gene, Is Induced by p53. Mol Cell 2001, 7(3):683.
  • [76]Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, et al.: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011, 145(4):571-583.
  • [77]Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, Baer R, Gu W: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012, 149(6):1269-1283.
  • [78]Liang Y, Liu J, Feng Z: The regulation of cellular metabolism by tumor suppressor p53. Cell & bioscience 2013, 3(1):9. BioMed Central Full Text
  • [79]Mizuno H, Spike BT, Wahl GM, Levine AJ: Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Natl Acad Sci U S A 2010, 107(52):22745-22750.
  • [80]Markert EK, Mizuno H, Vazquez A, Levine AJ: Molecular classification of prostate cancer using curated expression signatures. Proc Natl Acad Sci U S A 2011, 108(52):21276-21281.
  • [81]Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, Kovalchuk A, Zhang W, Huang J: Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle 2013, 12(8):1279-1291.
  文献评价指标  
  下载次数:11次 浏览次数:6次