期刊论文详细信息
Biology Direct
Mitochondrial activity in gametes and transmission of viable mtDNA
Liliana Milani1  Fabrizio Ghiselli1 
[1] Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Via Selmi 3, Bologna, 40126, Italy
关键词: Balbiani body;    mtDNA selection;    Ageing;    Oxidative stress;    Reactive oxygen species;    Oxidative phosphorylation;    Germ line mitochondria;    Doubly uniparental inheritance of mitochondria;    Mitochondrial inheritance;    Mitochondrial membrane potential;   
Others  :  1190858
DOI  :  10.1186/s13062-015-0057-6
 received in 2014-10-23, accepted in 2015-04-29,  发布年份 2015
PDF
【 摘 要 】

Background

The retention of a genome in mitochondria (mtDNA) has several consequences, among which the problem of ensuring a faithful transmission of its genetic information through generations despite the accumulation of oxidative damage by reactive oxygen species (ROS) predicted by the free radical theory of ageing. A division of labour between male and female germ line mitochondria was proposed since mtDNA is maternally inherited, female gametes would prevent damages by repressing oxidative phosphorylation, thus being quiescent genetic templates. We assessed mitochondrial activity in gametes of an unusual biological system (doubly uniparental inheritance of mitochondria, DUI), in which also sperm mtDNA is transmitted to the progeny, thus having to overcome the problem of maintaining genetic information viability while producing ATP for swimming.

Results

Ultrastructural analysis shows no difference in the conformation of mitochondrial cristae in male and female mature gametes, while mitochondria in immature oocytes exhibit a simpler internal structure. Our data on transcriptional activity in germ line mitochondria show variability between sexes and different developmental stages, but we do not find evidence for transcriptional quiescence of mitochondria. Our observations on mitochondrial membrane potential are consistent with mitochondria being active in both male and female gametes.

Conclusions

Our findings and the literature we discussed may be consistent with the hypothesis that template mitochondria are not functionally silenced, on the contrary their activity might be fundamental for the inheritance mechanism. We think that during gametogenesis, fertilization and embryo development, mitochondria undergo selection for different traits (e.g. replication, membrane potential), increasing the probability of the transmission of functional organelles. In these phases of life cycle, the great reduction in mtDNA copy number per organelle/cell and the stochastic segregation of mtDNA variants would greatly improve the efficiency of selection. When a higher mtDNA copy number per organelle/cell is present, selection on mtDNA deleterious mutants is less effective, due to the buffering effect of wild-type variants. In our opinion, a combination of drift and selection on germ line mtDNA population, might be responsible for the maintenance of viable mitochondrial genetic information through generations, and a mitochondrial activity would be necessary for the selective process.

Reviewers

This article was reviewed by Nick Lane, Fedor S Severin and Fyodor Kondrashov.

【 授权许可】

   
2015 Milani and Ghiselli; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150521012142147.pdf 3133KB PDF download
Figure 6. 180KB Image download
Figure 5. 245KB Image download
Figure 4. 57KB Image download
Figure 3. 51KB Image download
Figure 2. 23KB Image download
Figure 1. 109KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Timmis JN, Ayliffe MA, Huang CY, Martin W: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004, 5:123-35.
  • [2]Breton S, Milani L, Ghiselli F, Guerra D, Stewart DT, Passamonti M. A resourceful genome: updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet. 2014;30:555-64.
  • [3]Allen JF: Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. J Theor Biol 1993, 165:609-31.
  • [4]Allen JF: The function of genomes in bioenergetic organelles. Phil Trans R Soc Lond B 2003, 358:19-38.
  • [5]Lane N, Martin W: The energetics of genome complexity. Nature 2010, 467:929.
  • [6]Lane N: Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 2011, 6:35.
  • [7]Rand DM, Haney RA, Fry AJ: Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 2004, 19:645-53.
  • [8]Burton RS, Barreto FS: A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 2012, 21:4942-57.
  • [9]Wolff JN, Ladoukakis ED, Enríquez JA, Dowling DK: Mitonuclear interactions: evolutionary consequences over multiple biological scales. Phil Trans R Soc B 2014, 369:20130443.
  • [10]Hoekstra RF: Nucleo-cytoplasmic conflict and the evolution of gamete dimorphism. In The Evoltion of Anisogamy. A fundamental phenomenon underlying sexual selection. Edited by Togashi T, Cox PA. Cambridge University Press, UK; 2011:262.
  • [11]Andreyev AY, Kushnareva YE, Starkov AA: Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 2005, 70:200-14.
  • [12]Harman D: Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956, 11:298-300.
  • [13]Beckman KB, Ames BN: The free radical theory of aging matures. Physiol Rev 1998, 78:547-81.
  • [14]Starkov AA: The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 2008, 1147:37-52.
  • [15]Lane N: Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations. Bioessays 2011, 33:860-9.
  • [16]Cosmides LM, Tooby J: Cytoplasmic inheritance and intragenomic conflict. J Theor Biol 1981, 89:83-129.
  • [17]Hurst LD: Intragenomic conflict as an evolutionary force. Proc Royal Soc Lond B 1992, 248:135-40.
  • [18]Allen JF: Separate sexes and the mitochondrial theory of ageing. J Theor Biol 1996, 180:135-40.
  • [19]Allen JF, de Paula WMB: Mitochondrial genome function and maternal inheritance. Biochem Soc T 2013, 41:5.
  • [20]de Paula WBM, Lucas CH, Agip A-N A, Vizcay-Barrena G, Allen JF: Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Phil Trans R Soc B 2013, 368:20120263.
  • [21]de Paula WBM, Agip A-N A, Missirlis F, Ashworth R, Vizcay-Barrena G, Lucas CH, et al.: Female and male gamete mitochondria Are distinct and complementary in transcription, structure, and genome function. Genome Biol Evol 2013, 5:1969-77.
  • [22]Zouros E: Biparental inheritance through uniparental transmission: the doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol Biol 2013, 40:1-31.
  • [23]Saavedra C, Reyero MI, Zouros E: Male-dependent doubly uniparental inheritance of mitochondrial DNA and female-dependent sex-ratio in the mussel Mytilus galloprovincialis. Genetics 1997, 145:1073-82.
  • [24]Sutherland B, Stewart DT, Kenchington E, Zouros E: The fate of paternal mitochondrial DNA in developing female mussels, Mytilus edulis: implications for the mechanism of doubly uniparental inheritance of mitochondrial DNA. Genetics 1998, 148:341-7.
  • [25]Milani L, Ghiselli F, Maurizii MG, Passamonti M: Doubly uniparental inheritance of mitochondria as a model system for studying germ line formation. PLoS One 2011, 6:e28194.
  • [26]Milani L, Ghiselli F, Passamonti M: Sex-linked mitochondrial behavior during early embryo development in Ruditapes philippinarum (Bivalvia Veneridae) a species with the Doubly Uniparental Inheritance (DUI) of mitochondria. J Exp Zool Part B 2012, 318:182-9.
  • [27]Breton S, Ghiselli F, Passamonti M, Milani L, Stewart DT, Hoeh WR: Evidence for a fourteenth mtDNA-encoded protein in the female-transmitted mtDNA of marine mussels (Bivalvia: Mytilidae). PLoS One 2011, 6:e19365.
  • [28]Venetis C, Theologidis I, Zouros E, Rodakis GC: No evidence for presence of maternal mitochondrial DNA in the sperm of Mytilus galloprovincialis males. Proc Biol Sci 2006, 273:2483-9.
  • [29]Ghiselli F, Milani L, Passamonti M: Strict sex-specific mtDNA segregation in the germline of the DUI species Venerupis philippinarum (Bivalvia Veneridae). Mol Biol Evol 2011, 28:949-61.
  • [30]Passamonti M, Ghiselli F: Doubly uniparental inheritance: two mitochondrial genomes, on precious model for organelle DNA inheritance and evolution. DNA Cell Biol 2009, 28:79-89.
  • [31]Milani L, Ghiselli F, Nuzhdin SV, Passamonti M: Nuclear Genes with Sex Bias in Ruditapes philippinarum (Bivalvia, Veneridae): Mitochondrial Inheritance and Sex Determination in DUI Species. J Exp Zool Part B 2013, 320:442-54.
  • [32]Larkman AU: The fine structure of mitochondria and the mitochondrial cloud during oogenesis on the sea anemone Actinia. Tissue Cell 1984, 16:393-404.
  • [33]Hertig AT, Adams EC: Studies on the human oocyte and its follicle. I. Ultrastructural and histochemical observations on the primordial follicle stage. J Cell Biol 1967, 34:647-75.
  • [34]Motta PM, Nottola SA, Makabe S, Heyn R: Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 2000, 15:129-47.
  • [35]Van Blerkom J, Davis P, Lee J: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod 1995, 10:415.
  • [36]Dumollard R, Duchen M, Carroll J: The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 2007, 77:21-49.
  • [37]Ghiselli F, Milani L, Guerra D, Chang PL, Breton S, Nuzhdin SV, et al.: Structure, transcription and variability of metazoan mitochondrial genome. Perspectives from an unusual mitochondrial inheritance system. Genome Biol Evol 2013, 5:1535-54.
  • [38]Fabioux C, Huvet A, Lelong C, Robert R, Pouvreau S, Daniel JY, et al.: Oyster vasa-like gene as a marker of the germline cell development in Crassostrea gigas. Biochem Bioph Res Co 2004, 320:592-8.
  • [39]Faccenda D, Tan CH, Duchen MR, Campanella M: Mitochondrial IF1 preserves cristae structure to limit apoptotic cell death signaling. Cell Cycle 2013, 12:2530-2.
  • [40]Wilding M, Carotenuto R, Infante V, Dale B, Marino M, Di Matteo L, et al.: Confocal microscopy analysis of the activity of mitochondria contained within the ’mitochondrial cloud’ during oogenesis in Xenopus laevis. Zygote 2001, 9:347-52.
  • [41]Van Blerkom J, Davis P: Mitochondrial signaling and fertilization. Mol Hum Reprod 2007, 13:759-70.
  • [42]Zhang Y-Z, Ouyang Y-C, Hou Y, Schatten H, Chen D-Y, Sun Q-Y: Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis. Develop Growth Differ 2008, 50:189-201.
  • [43]Lee S-K, Zhao M-H, Kwon J-W, Li Y-H, Lin Z-L, Jin Y-X, et al.: The association of mitochondrial potential and copy number with Pig oocyte maturation and developmental potential. J Reprod Dev 2014, 60:128-35.
  • [44]Noguchi T, Koizumi M, Hayashi S: Sustained elongation of sperm tail promoted by local remodeling of giant mitochondria in drosophila. Curr Biol 2011, 21:805-14.
  • [45]Nishimura Y, Yoshinari T, Naruse K, Yamada T, Sumi K, Mitani H, et al.: Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc Natl Acad Sci U S A 2006, 103:1382-7.
  • [46]Guan J, Kinoshita M, Yuan L: Spatiotemporal association of DNAJB13 with the annulus during mouse sperm flagellum development. BMC Dev Biol 2009, 9:23.
  • [47]Celeghini ECC, Nascimento J, Raphael CF, Andrade AFC, Arruda RP: Simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes in ram sperm by fluorescent probes. Arq Bras Med Vet Zootec 2010, 62:536-43.
  • [48]Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, et al.: Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012, 76:444-95.
  • [49]Mann T: Rothschild: Carbohydrate and Adenosinetriphosphate in Sea-urchin semen. Nature 1950, 166:781.
  • [50]Mita M, Nakamura M: Energy metabolism of sea urchin spermatozoa: an approach based on echinoid phylogeny. Zoolog Sci 1998, 15:1-10.
  • [51]Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A: Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update 2009, 15:553-72.
  • [52]Van Blerkom J: Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 2011, 11:797-813.
  • [53]Ge H, Tollner TL, Hu Z, Dai M, Li X, Guan H, et al.: The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev 2012, 79:392-401.
  • [54]Wanet A, Arnould T, Renard P, Lou PH, Peterson N: Mitochondrial involvement in Stemness and stem cell differentiation. In Cellular bioenergetics in health and disease: New perspective in mitochondrial biology. Edited by Lou P-H, Peterson N. Research Signpost, Kerala, India; 2012:195-215.
  • [55]Nichols DG, Ferguson SJ: Bioenergetics. 3rd edition. Academic, Amsterdam; 2002.
  • [56]Zorov DB, Isaev NK, Plotnikov EY, Zorova LD, Stelmashook EV, Vasileva AK, et al.: The mitochondrion as Janus Bifrons. Biochem Moscow 2007, 72:1115-26.
  • [57]Wilding M, Dale B, Marino M, di Matteo L, Alviggi C, Pisaturo ML, et al.: Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum Reprod 2001, 16:909-17.
  • [58]Wang X, Sharma RK, Gupta A, George V, Thomas AJ Jr, Falcone T, et al.: Alterations in mitochondria membrane potential and oxidative stress in infertile men: a prospective observational study. Fertil Steril 2003, 80:844-50.
  • [59]Tsukagoshi H, Busch W, Benfey PN: Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 2010, 143:606-16.
  • [60]Cottet-Rousselle C, Ronot X, Leverve X, Mayol J-F: Cytometric assessment of mitochondria using fluorescent probes. Cytom Part A 2011, 79A:405-25.
  • [61]Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al.: Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011, 8:59-71.
  • [62]Hennet ML, Combelles CM: The antral follicle: a microenvironment for oocyte differentiation. Int J Dev Biol 2012, 56:819-31.
  • [63]Martín M, Distefano A, Zabaleta E, Pagnussat G: New insights into the functional roles of reactive oxygen species during embryo sac development and fertilization in Arabidopsis thaliana. Plant Signal Behav 2013, 8:e25714.
  • [64]Barja G: Updating the mitochondrial free radical theory of aging: an integrated view, Key aspects, and confounding concepts. Antioxid Redox Sign 2013, 19:1420-45.
  • [65]Viña J, Borras C, Abdelaziz KM, Garcia-Valles R, Gomez-Cabrera MC: The free radical theory of aging revisited: the cell signaling disruption theory of aging. Antioxid Redox Signal 2013, 19:779-87.
  • [66]Russo R, Monaco D, Rubessa M, El-Bahrawy KA, El-Sayed A, Martino NA, et al.: Confocal fluorescence assessment of bioenergy/redox status of dromedary camel (Camelus dromedarius) oocytes before and after in vitro maturation. Reprod Biol Endocrin 2014, 12:16.
  • [67]Galtier N, Jobson RW, Nabholz B, Glémin S, Blier PU: Mitochondrial whims: metabolic rate, longevity and the rate of molecular evolution. Biol Lett 2009, 5:413-6.
  • [68]Speakman JR, Garratt M: Oxidative stress as a cost of reproduction: beyond the simplistic trade-off model. Bioessays 2013, 35:93-106.
  • [69]Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, et al.: Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429:417-23.
  • [70]Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, et al.: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005, 309:481-4.
  • [71]Nabholz B, Glémin S, Galtier N: Strong variations of mitochondrial mutation rate across mammals-the longevity hypothesis. Mol Biol Evol 2008, 25:120-30.
  • [72]Kennedy SR, Salk JJ, Schmitt MW, Loeb LA: Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 2013, 9:e1003794.
  • [73]Itsara LS, Kennedy SR, Fox EJ, Yu S, Hewitt JJ, Sanchez-Contreras M, et al.: Oxidative stress is not a major contributor to somatic mitochondrial DNA mutations. PLoS Genet 2014, 10:e1003974.
  • [74]Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP, Merlin D, et al.: Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 2007, 21:197-206.
  • [75]Kienhöfer J, Häussler DJ, Ruckelshausen F, Muessig E, Weber K, Pimentel D, et al.: Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 2009, 23:2034-44.
  • [76]Bogenhagen DF: Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819, 2012:914-20.
  • [77]Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, et al.: The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol 2013, 5:a011080.
  • [78]Wardman P: Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 2007, 43:995-1022.
  • [79]Schwarzländer M, Wagner S, Ermakova YG, Belousov VV, Radi R, Beckman JS, et al.: The ‘mitoflash’ probe cpYFP does not respond to superoxide. Nature 2014, 514:E12-5.
  • [80]Forman HJ: Critical methods in free radical biology & medicine. Free Radical Bio Med 2009, 47:S207.
  • [81]Kohen R, Nyska A: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002, 30:620-50.
  • [82]Shoubridge EA, Wai T: Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 2007, 77:87-111.
  • [83]Mishra P, Chan DC: Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 2014, 15:634-46.
  • [84]Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HM, Turnbull DM, et al.: The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet 2000, 16:500-5.
  • [85]Fan W, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, et al.: A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 2008, 319:958-62.
  • [86]Shoubridge EA, Wai T: Medicine. Sidestepping mutational meltdown. Science 2008, 319:914-5.
  • [87]Freyer C, Cree LM, Mourier A, Stewart JB, Koolmeister C, Milenkovic D, et al.: Variation in germline mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission. Nat Genet 2012, 44:1282-5.
  • [88]Hill JH, Chen Z, Xu H: Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant. Nat Genet 2014, 46:389-92.
  • [89]Kloc M, Bilinski S, Etkin LD: The Balbiany body and germ cell determinants: 150 years later. Curr Top Dev Biol 2004, 59:1-36.
  • [90]Pepling ME, Wilhelm JE, O’Hara AL, Gephardt GW, Spradling AC: Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci U S A 2007, 104:187-92.
  • [91]Guraya SS: Recent advances in the morphology, cytochemistry and function of Balbiani’s vitelline body in animal oocytes. Int Rev Cytol 1979, 59:249-321.
  • [92]Pepling ME, Spradling AC: Female mouse germ cells form synchronously dividing cysts. Development 1998, 125:3323-8.
  • [93]Cox RT, Spradling AC: A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 2003, 130:1579-90.
  • [94]Cox RT, Spradling AC: Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 2006, 133:3371-7.
  • [95]Zhou RR, Wang B, Wang J, Schatten H, Zhang YZ: Is the mitochondrial cloud the selection machinery for preferentially transmitting wild-type mtDNA between generations? Rewinding Müller’s ratchet efficiently. Curr Genet 2010, 56:101-7.
  • [96]Lim AK, Kai T: Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007, 104:6714-9.
  • [97]Wai T, Teoli D, Shoubridge EA: The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 2008, 40:1484-8.
  • [98]Dujon B: Mitochondrial genetics and functions. In The molecular biology of the yeast saccharomyces. Edited by Strathern JN, Jones EW, Broach JR. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1981:505-635.
  • [99]Yoneda M, Chomyn A, Martinuzzi A, Hurko O, Attardi G: Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy. Proc Natl Acad Sci U S A 1992, 89:11164-8.
  • [100]Krakauer DC, Mira A: Mitochondria and germ-cell death. Nature 1999, 400:125-6.
  • [101]Milani L, Ghiselli F, Iannello M, Passamonti M: Evidence for somatic transcription of male-transmitted mitochondrial genome in the DUI species Ruditapes philippinarum (Bivalvia: Veneridae). Curr Genet 2014, 60:163-73.
  • [102]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-86.
  • [103]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) Method. Methods 2001, 25:402-8.
  • [104]Pendergrass W, Wolf N, Poot M: Efficacy of MitoTracker GreenTM and CMXRosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry Part A 2004, 61A:162-9.
  • [105]Casper-Lindley C, Kimura S, Saxton DS, Essaw Y, Simpson I, Tan V, et al.: Rapid Fluorescence-Based Screening for Wolbachia Endosymbionts in Drosophila Germ Line and Somatic Tissues. Appl Environ Microb 2011, 77:4788-94.
  • [106]Marlow FL, Mullins MC: Bucky ball functions in Balbiani body assembly and animal–vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 2008, 321:40-50.
  • [107]Yu Y, Dumollard R, Rossbach A, Lai FA, Swann K: Redistribution of mitochondria leads to bursts of ATP production during spontaneous mouse oocyte maturation. J Cell Physiol 2010, 224:672-80.
  • [108]Reyes M, Palomino J, Parraguez VH, Hidalgo M, Saffie P: Mitochondrial distribution and meiotic progression in canine oocytes during in vivo and in vitro maturation. Theriogenology 2011, 75:346-53.
  文献评价指标  
  下载次数:48次 浏览次数:8次