期刊论文详细信息
Longevity & Healthspan
Telomeres, oxidative stress and inflammatory factors: partners in cellular senescence?
João F Passos2  Graeme Hewitt2  Clara Correia-Melo1 
[1] Graduate Programme in Areas of Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal;Ageing Research Laboratories, Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
关键词: Inflammation;    Oxidative stress;    Ageing;    Senescence;    Telomeres;    DNA damage response;   
Others  :  809225
DOI  :  10.1186/2046-2395-3-1
 received in 2013-07-16, accepted in 2013-12-02,  发布年份 2014
PDF
【 摘 要 】

Senescence, the state of irreversible cell-cycle arrest, plays paradoxical albeit important roles in vivo: it protects organisms against cancer but also contributes to age-related loss of tissue function. The DNA damage response (DDR) has a central role in cellular senescence. Not only does it contribute to the irreversible loss of replicative capacity but also to the production and secretion of reactive oxygen species (ROS), and bioactive peptides collectively known as the senescence-associated secretory phenotype (SASP). Both ROS and the SASP have been shown to impact on senescence in an autocrine as well as paracrine fashion; however, the underlying mechanisms are not well understood. In this review we describe our current understanding of cellular senescence, examine in detail the intricate pathways linking the DDR, ROS and SASP, and evaluate their impact on the stability of the senescent phenotype.

【 授权许可】

   
2014 Correia-Melo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140709000904197.pdf 1540KB PDF download
Figure 3. 118KB Image download
Figure 2. 99KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Hayflick L, Moorhead PS: The serial cultivation of human diploid cell strains. Exp Cell Res 1961, 25:585-621.
  • [2]Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI: Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A 1988, 85:5112-5116.
  • [3]Campisi J: Cancer, aging and cellular senescence. In Vivo 2000, 14:183-188.
  • [4]Sitte N, Merker K, von Zglinicki T, Grune T: Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radic Biol Med 2000, 28:701-708.
  • [5]von Zglinicki T, Pilger R, Sitte N: Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 2000, 28:64-74.
  • [6]Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW: Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003, 113:703-716.
  • [7]Ben-Porath I, Weinberg RA: The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005, 37:961-976.
  • [8]Ramsey M, Sharpless N: ROS as a tumour suppressor? Nat Cell Biol 2006, 8:1213-1215.
  • [9]Bartek J, Bartkova J, Lukas J: DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 2007, 26:7773-7779.
  • [10]Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM: Cellular senescence in aging primates. Science 2006, 311:1257.
  • [11]Krishnamurthy J, Torrice C, Ramsey M, Kovalev G, Al-Regaiey K, Su L, Sharpless N: Ink4a/Arf expression is a biomarker of aging. J Clin Invest 2004, 114:1299-1307.
  • [12]Wang C, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 2009, 8:311-323.
  • [13]Hewitt G, Jurk D, Marques F, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Taschuk M, Mann J, Passos J: Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 2012, 3:708.
  • [14]Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V, Tsolou A, Gonos E, Thrasivoulou C, Saffrey M, Cameron K, von Zglinicki T: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging cell 2012, 11:996-1004.
  • [15]Sone H, Kagawa Y: Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia 2005, 48:58-67.
  • [16]Minamino T, Komuro I: Vascular cell senescence: contribution to atherosclerosis. Circ Res 2007, 100:15-26.
  • [17]Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, Jiang H, Stepczynska A, Wang C, Buer J, Lee HW, von Zglinicki T, Ganser A, Schirmacher P, Nakauchi H, Rudolph KL: Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007, 39:99-105.
  • [18]Rudolph KL, Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA: Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 1999, 96:701-712.
  • [19]Tyner S, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Park S, Thompson T, Karsenty G, Bradley A, Donehower L: p53 mutant mice that display early ageing-associated phenotypes. Nature 2002, 415:45-53.
  • [20]Baker D, Wijshake T, Tchkonia T, LeBrasseur N, Childs B, van de Sluis B, Kirkland J, van Deursen J: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011, 479:232-236.
  • [21]Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A, Saretzki G, Rudolph KL, Kirkwood TB, von Zglinicki T: Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 2010, 6:347.
  • [22]Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d'Adda di Fagagna F, Bernard D, Hernando E, Gil J: Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008, 133:1006-1018.
  • [23]Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS: Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008, 133:1019-1031.
  • [24]d'Adda di Fagagna F, Teo SH, Jackson SP: Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 2004, 18:1781-1799.
  • [25]de Lange T: Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 2005, 19:2100-2110.
  • [26]Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T: Mammalian Telomeres End in a Large Duplex Loop. Cell 1999, 97:503-514.
  • [27]Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE: Extension of Life-Span by Introduction of Telomerase into Normal Human Cells. Science 1998, 279:349-352.
  • [28]Blasco MA, Lee H-W, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW: Telomere Shortening and Tumor Formation by Mouse Cells Lacking Telomerase RNA. Cell 1997, 91:25-34.
  • [29]Lee H-W, Blasco MA, Gottlieb GJ, Horner JW, Greider CW, DePinho RA: Essential role of mouse telomerase in highly proliferative organs. Nature 1998, 392:569-574.
  • [30]Wong K-K, Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA: Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 2003, 421:643-648.
  • [31]d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, Saretzki G, Carter NP, Jackson SP: A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003, 426:194-198.
  • [32]Takai H, Smogorzewska A, de Lange T: DNA Damage Foci at Dysfunctional Telomeres. Curr Biol 2003, 13:1549-1556.
  • [33]Shiloh Y: The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 2006, 31:402-410.
  • [34]Ciccia A, Elledge SJ: The DNA damage response: making it safe to play with knives. Mol Cell 2010, 40:179-204.
  • [35]Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J: Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009, 11:973-979.
  • [36]Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov J, Bucci G, Dobreva M, Matti V, Beausejour C, Herbig U, Longhese M, d'Adda di Fagagna F: Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol 2012, 14:355-365.
  • [37]Smogorzewska A, Karlseder J, Holtgreve-Grez H, Jauch A, de Lange T: DNA Ligase IV-Dependent NHEJ of Deprotected Mammalian Telomeres in G1 and G2. Curr Biol 2002, 12:1635-1644.
  • [38]van Steensel B, Smogorzewska A, de Lange T: TRF2 Protects Human Telomeres from End-to-End Fusions. Cell 1998, 92:401-413.
  • [39]Celli GB, de Lange T: DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 2005, 7:712-718.
  • [40]Bae N, Baumann P: A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell 2007, 26:323-334.
  • [41]Kaul Z, Cesare A, Huschtscha L, Neumann A, Reddel R: Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep 2012, 13:52-59.
  • [42]Suram A, Kaplunov J, Patel P, Ruan H, Cerutti A, Boccardi V, Fumagalli M, Di Micco R, Mirani N, Gurung R, Hande M, d'Adda di FagagnaHerbig U F, Herbig U: Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 2012, 31:2839-2851.
  • [43]Rastogi S, Joshi B, Dasgupta P, Morris M, Wright K, Chellappan S: Prohibitin facilitates cellular senescence by recruiting specific corepressors to inhibit E2F target genes. Mol Cell Biol 2006, 26:4161-4171.
  • [44]von Zglinicki T: Oxidative stress shortens telomeres. Trends Biochem Sci 2002, 27:339-344.
  • [45]Lu T, Finkel T: Free radicals and senescence. Exp Cell Res 2008, 314:1918-1922.
  • [46]Chen Q, Fischer A, Reagan J, Yan L, Ames B: Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 1995, 92:4337-4341.
  • [47]Rai P, Onder T, Young J, McFaline J, Pang B, Dedon P, Weinberg R: Continuous elimination of oxidized nucleotides is necessary to prevent rapid onset of cellular senescence. Proc Natl Acad Sci U S A 2009, 106:169-174.
  • [48]Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN: Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci U S A 1990, 87:4533-4537.
  • [49]Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER: Age-related changes in oxidized proteins. J Biol Chem 1987, 262:5488-5491.
  • [50]Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A: Does oxidative damage to DNA increase with age? Proc Natl Acad Sci U S A 2001, 98:10469-10474.
  • [51]Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H: Trends in oxidative aging theories. Free Radical Biol Med 2007, 43:477-503.
  • [52]Allen RG, Tresini M, Keogh BP, Doggett DL, Cristofalo VJ: Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol 1999, 180:114-122.
  • [53]Hutter E, Unterluggauer H, Uberall F, Schramek H, Jansen-Durr P: Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress. Exp Gerontol 2002, 37:1165-1174.
  • [54]Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E: Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J 2004, 380:919-928.
  • [55]Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T: Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 2007, 5:e110.
  • [56]Zwerschke W, Mazurek S, Stockl P, Hutter E, Eigenbrodt E, Jansen-Durr P: Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J 2003, 376:403-411.
  • [57]Saretzki G, Murphy MP, von Zglinicki T: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2003, 2:141-143.
  • [58]Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu Z-X, Ferrans VJ, Howard BH, Finkel T: Ras Proteins Induce Senescence by Altering the Intracellular Levels of Reactive Oxygen Species. J Biol Chem 1999, 274:7936-7940.
  • [59]Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov V, Mackay G, van der Burg S, Verdegaal E, Cascante M, Shlomi T, Gottlieb E, Peeper D: A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498:109-112.
  • [60]Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA: Influence of Induced Reactive Oxygen Species in p53-Mediated Cell Fate Decisions. Mol Cell Biol 2003, 23:8576-8585.
  • [61]Macip S, Igarashi M, Fang L, Chen A, Pan Z, Lee S, Aaronson S: Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J 2002, 21:2180-2188.
  • [62]Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E: Mitogenic signalling and the p16INK4A-RB pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 2006, 8:1291-1297.
  • [63]Passos JF, von Zglinicki T: Oxygen free radicals in cell senescence: are they signal transducers? Free Radic Res 2006, 40:1277-1283.
  • [64]Talior I, Tennenbaum T, Kuroki T, Eldar-Finkelman H: PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol - Endocrinol Metab 2005, 288:E405-E411.
  • [65]Lener B, Kozieł R, Pircher H, Hütter E, Greussing R, Herndler-Brandstetter D, Hermann M, Unterluggauer H, Jansen-Dürr P: The NADPH oxidase Nox4 restricts the replicative lifespan of human endothelial cells. Biochem J 2009, 423:363-374.
  • [66]Moiseeva O, Bourdeau V, Roux A, Deschemes-Simard X, Ferbeyre G: Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 2009, 29:4495-4507.
  • [67]Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B: A model for p53-induced apoptosis. Nature 1997, 389:300-305.
  • [68]Moll U, Marchenko N, X-k Z: p53 and Nur77/TR3 – transcription factors that directly target mitochondria for cell death induction. Oncogene 2006, 25:4725-4743.
  • [69]Matoba S, Kang J-G, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM: p53 Regulates Mitochondrial Respiration. Science 2006, 312:1650-1653.
  • [70]Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, Jaskelioff M, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA: Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470:359-365.
  • [71]Koli K, Myllarniemi M, Keski-Oja J, Kinnula VL: Transforming growth factor-beta activation in the lung: focus on fibrosis and reactive oxygen species. Antioxid Redox Signalling 2008, 10:333-342.
  • [72]Torres M, Forman HJ: Redox signalling and MAP kinase pathways. Biofactors 2003, 17:287-296.
  • [73]Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T: A senescent cell bystander effect: senescence-induced senescence. Aging Cell 2012, 11:345-349.
  • [74]Coppé J-P, Patil C, Rodier F, Sun Y, Muñoz D, Goldstein J, Nelson P, Desprez P-Y, Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008, 6:2853-2868.
  • [75]Kuilman T, Peeper DS: Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009, 9:81-94.
  • [76]Coppé J-P, Desprez P-Y, Krtolica A, Campisi J: The senescence-associated secretory phenotype: the dark side of tumor suppression. Ann Rev Pathol 2010, 5:99-118.
  • [77]Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, Tacke F, Ott M, Luedde T, Longerich T, Kubicka S, Zender L: Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011, 479:547-551.
  • [78]Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW: Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007, 445:656-660.
  • [79]Liu D, Hornsby P: Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res 2007, 67:3117-3126.
  • [80]Krtolica A, Parrinello S, Lockett S, Desprez P, Campisi J: Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Nat Acad Sci U S A 2001, 98:12072-12077.
  • [81]Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang T-W, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Js G: A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 2013, 15:978-990.
  • [82]Pahl H: Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999, 18:6853-6866.
  • [83]Barnes P, Karin M: Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. New Engl J Med 1997, 336:1066-1071.
  • [84]Rovillain E, Mansfield L, Caetano C, Alvarez-Fernandez M, Caballero OL, Medema RH, Hummerich H, Jat PS: Activation of nuclear factor-kappa B signalling promotes cellular senescence. Oncogene 2011, 30:2356-2366.
  • [85]Freund A, Patil CK, Campisi J: p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 2011, 30:1536-1548.
  • [86]Osorio FG, Barcena C, Soria-Valles C, Ramsay AJ, de Carlos F, Cobo J, Fueyo A, Freije JMP, Lopez-Otin C: Nuclear lamina defects cause ATM-dependent NF-κB activation and link accelerated aging to a systemic inflammatory response. Genes Dev 2012, 26:2311-2324.
  • [87]Tilstra JS, Robinson AR, Wang J, Gregg S, Clauson CL, Reay DP, Nasto LA, St Croix CM, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD: NF-kB inhibition delays DNA damage induced senescence and aging in mice. J Clin Invest 2012, 122:2601-2612.
  • [88]Coppé J-P, Rodier F, Patil CK, Freund A, Desprez P-Y, Campisi J: Tumor Suppressor and Aging Biomarker p16INK4a Induces Cellular Senescence without the Associated Inflammatory Secretory Phenotype. J Biol Chem 2011, 286:36396-36403.
  • [89]Moiseeva O, Mallette F, Mukhopadhyay U, Moores A, Ferbeyre G: DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 2006, 17:1583-1592.
  • [90]Tremain R, Marko M, Kinnimulki V, Ueno H, Bottinger E, Glick A: Defects in TGF-beta signaling overcome senescence of mouse keratinocytes expressing v-Ha-ras. Oncogene 2000, 19:1698-1709.
  • [91]Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O: Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci 2005, 118:743-758.
  • [92]Frippiat C, Chen Q, Zdanov S, Magalhaes J, Remacle J, Toussaint O: Subcytotoxic H2O2 stress triggers a release of transforming growth factor-beta 1, which induces biomarkers of cellular senescence of human diploid fibroblasts. J Biol Chem 2001, 276:2531-2537.
  • [93]Bottero V, Rossi F, Samson M, Mari M, Hofman P, Peyron J: Ikappa b-alpha, the NF-kappa B inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 2001, 276:21317-21324.
  • [94]Cogswell P, Kashatus D, Keifer J, Guttridge D, Reuther J, Bristow C, Roy S, Nicholson D, Baldwin A: NF-kappa B and I kappa B alpha are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-kappa B. J Biol Chem 2003, 278:2963-2968.
  • [95]Bakkar N, Wang J, Ladner K, Wang H, Dahlman J, Carathers M, Acharyya S, Rudnicki M, Hollenbach A, Guttridge D: IKK/NF-kappaB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol 2008, 180:787-802.
  • [96]Bakkar N, Ladner K, Canan B, Liyanarachchi S, Bal N, Pant M, Periasamy M, Li Q, Janssen P, Guttridge D: IKKα and alternative NF-κB regulate PGC-1β to promote oxidative muscle metabolism. J Cell Biol 2012, 196:497-511.
  • [97]Morgan M, Z-g L: Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 2011, 21:103-115.
  • [98]Mariappan N, Elks C, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, Francis J: NF-kappaB-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type II diabetes. Cardiovasc Res 2010, 85:473-483.
  • [99]Gloire G, Legrand-Poels S, Piette J: NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 2006, 72:1493-1505.
  • [100]Meyer M, Schreck R, Baeuerle P: H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 1993, 12:2005-2015.
  文献评价指标  
  下载次数:20次 浏览次数:3次