期刊论文详细信息
BMC Biotechnology
Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V
Tobias Baumann2  Katja M Arndt2  Kristian M Müller1 
[1] Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, Room UHG E2-143 Universitätsstr. 25, Bielefeld 33615, Germany
[2] Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Potsdam 14476, Germany
关键词: Restriction enzymes;    Recombinant Escherichia coli;    Polymerase chain reaction;    Molecular methods;    Modified primers;    Genetic vectors;    DNA cleavage;    Cohesive ends;   
Others  :  835335
DOI  :  10.1186/1472-6750-13-81
 received in 2013-03-11, accepted in 2013-09-25,  发布年份 2013
【 摘 要 】

Background

DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning.

Results

A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5′ end. Treatment of such PCR products with endonuclease V generates 3′ protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions.

Conclusions

The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed.

【 授权许可】

   
2013 Baumann et al.; licensee BioMed Central Ltd.

【 参考文献 】
  • [1]Roberts RJ, Vincze T, Posfai J, Macelis D: REBASE–a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010, 38:D234-D236.
  • [2]Zimmermann K, Schögl D, Mannhalter JW: Digestion of terminal restriction endonuclease recognition sites on PCR products. Biotechniques 1998, 24:582-584.
  • [3]Wang T, Ma X, Zhu H, Li A, Du G, Chen J: Available methods for assembling expression cassettes for synthetic biology. Appl Microbiol Biotechnol 2012, 93:1853-1863.
  • [4]Johnston K, Marmorstein R: Co-expression of proteins in E. coli using dual expression vectors. Methods Mol Biol 2003, 205:205-213.
  • [5]Perrakis A, Romier C: Assembly of protein complexes by coexpression in prokaryotic and eukaryotic hosts: an overview. Methods Mol Biol 2008, 426:247-256.
  • [6]Romier C, Ben Jelloul M, Albeck S, Buchwald G, Busso D, Celie PHN, Christodoulou E, De Marco V, van Gerwen S, Knipscheer P, Lebbink JH, Notenboom V, Poterszman A, Rochel N, Cohen SX, Unger T, Sussman JL, Moras D, Sixma TK, Perrakis A: Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies. Acta Crystallogr D Biol Crystallogr 2006, 62:1232-1242.
  • [7]Bauer JC, Wright DA, Braman JC, Geha RS: Circular site-directed mutagenesis. 2002. US patent 6,391,548 B1
  • [8]Liang X, Peng L, Li K, Peterson T, Katzen F: A method for multi-site-directed mutagenesis based on homologous recombination. Anal Biochem 2012, 427:99-101.
  • [9]NEBuffer Activity Chart for Restriction Enzymes [https:/ / www.neb.com/ tools-and-resources/ usage-guidelines/ nebuffer-performance-chart-with-res triction-enzymes] webcite
  • [10]Hartley JL: DNA cloning using in vitro site-specific recombination. Genome Res 2000, 10:1788-1795.
  • [11]Itaya M, Fujita K, Kuroki A, Tsuge K: Bottom-up genome assembly using the bacillus subtilis genome vector. Nat Methods 2008, 5:41-43.
  • [12]Shao Z, Zhao H, Zhao H: DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res 2009, 37:e16.
  • [13]Bubeck P, Winkler M, Bautsch W: Rapid cloning by homologous recombination in vivo. Nucleic Acids Res 1993, 21:3601-3602.
  • [14]Oliner JD, Kinzler KW, Vogelstein B: In vivo cloning of PCR products in E. coli. Nucleic Acids Res 1993, 21:5192-5197.
  • [15]Li MZ, Elledge SJ: MAGIC, an in vivo genetic method for the rapid construction of recombinant DNA molecules. Nat Genet 2005, 37:311-319.
  • [16]Zhang Y, Werling U, Edelmann W: SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 2012, 40:e55.
  • [17]Geiser M, Cèbe R, Drewello D, Schmitz R: Integration of PCR fragments at any specific site within cloning vectors without the use of restriction enzymes and DNA ligase. Biotechniques 2001, 31:88-90. 92
  • [18]Quan J, Tian J: Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 2009, 4:e6441.
  • [19]Chen GJ, Qiu N, Karrer C, Caspers P, Page MG: Restriction site-free insertion of PCR products directionally into vectors. Biotechniques 2000, 28:498-500. 504–505
  • [20]Miyazaki K: MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods Enzymol 2011, 498:399-406.
  • [21]Spiliotis M: Inverse fusion PCR cloning. PLoS One 2012, 7:e35407.
  • [22]Stoddard BL: Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 2011, 19:7-15.
  • [23]Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B: TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 2011, 39:359-372.
  • [24]Le Provost F, Lillico S, Passet B, Young R, Whitelaw B, Vilotte J-L: Zinc finger nuclease technology heralds a new era in mammalian transgenesis. Trends Biotechnol 2010, 28:134-141.
  • [25]Kaluz S, Kölble K, Reid KB: Directional cloning of PCR products using exonuclease III. Trends Biotechnol 1992, 20:4369-4370.
  • [26]Kuijper JL, Wiren KM, Mathies LD, Gray CL, Hagen FS: Functional cloning vectors for use in directional cDNA cloning using cohesive ends produced with T4 DNA polymerase. Gene 1992, 112:147-155.
  • [27]Aslanidis C, de Jong PJ: Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 1990, 18:6069-6074.
  • [28]Li MZ, Elledge SJ: Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 2007, 4:251-256.
  • [29]Klock HE, Lesley SA: The Polymerase Incomplete Primer Extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis. Methods Mol Biol 2009, 498:91-103.
  • [30]Tillett D, Neilan B: Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res 1999, 27:e26.
  • [31]Donahue WF, Turczyk BM, Jarrell KA: Rapid gene cloning using terminator primers and modular vectors. Nucleic Acids Res 2002, 30:e95.
  • [32]Zheng D, Liu X, Zhou Y: 3GC cloning: PCR products cloning mediated by terminal deoxynucleotidyl transferase. Anal Biochem 2008, 378:108-110.
  • [33]Gál J, Kálmán M: Autosticky PCR. Directional cloning of PCR products with performed 5′ overhangs. Methods Mol Biol 2002, 192:141-151.
  • [34]Blanusa M, Schenk A, Sadeghi H, Marienhagen J, Schwaneberg U: Phosphorothioate-based ligase-independent gene cloning (PLICing): an enzyme-free and sequence-independent cloning method. Anal Biochem 2010, 406:141-146.
  • [35]Zhou M, Hatahet Z: An improved ligase-free method for directional subcloning of PCR amplified DNA. Nucleic Acids Res 1995, 23:1089-1090.
  • [36]Tseng H: DNA cloning without restriction enzyme and ligase. Biotechniques 1999, 27:1240-1244.
  • [37]Irwin CR, Farmer A, Willer DO, Evans DH: In-fusion® cloning with vaccinia virus DNA polymerase. Methods Mol Biol 2012, 890:23-35.
  • [38]Gibson DG, Young L, Chuang R, Venter JC, Hutchison CA, Smith HO: Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 2009, 6:343-345.
  • [39]Smith C, Day PJ, Walker MR: Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors. Genome Res 1993, 2:328-332.
  • [40]Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R, Vaiskunaite R: USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 2007, 35:1992-2002.
  • [41]Nour-Eldin HH, Hansen BG, Nørholm MHH, Jensen JK, Halkier BA: Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res 2006, 34:e122.
  • [42]Hou J, Liu X, Zheng Y, Liu J: An efficient cloning of DNA fragments by a method based on uracil-DNA glycosylase and endonuclease IV. J Biochem Biophys Methods 2008, 70:1196-1198.
  • [43]Watkins NE, SantaLucia J: Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res 2005, 33:6258-6267.
  • [44]Knittel T, Picard D: PCR with degenerate primers containing deoxyinosine fails with Pfu DNA polymerase. PCR Methods Appl 1993, 2:346-347.
  • [45]Bartl S: Amplification using degenerate primers with multiple inosines to isolate genes with minimal sequence similarity. Methods Mol Biol 1997, 67:451-457.
  • [46]Knoth K, Roberds S, Poteet C, Tamkun M: Highly degenerate, inosine-containing primers specifically amplify rare cDNA using the polymerase chain reaction. Nucleic Acids Res 1988, 16:10932.
  • [47]Spee JH, de Vos WM, Kuipers OP: Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res 1993, 21:777-778.
  • [48]Wong TS, Tee KL, Hauer B, Schwaneberg U: Sequence saturation mutagenesis (SeSaM): a novel method for directed evolution. Nucleic Acids Res 2004, 32:e26.
  • [49]Lartigue MF, Leflon-Guibout V, Poirel L, Nordmann P, Nicolas-Chanoine M-H: Promoters P3, Pa/Pb, P4, and P5 upstream from bla(TEM) genes and their relationship to beta-lactam resistance. Antimicrob Agents Chemother 2002, 46:4035-4037.
  • [50]Dalhus B, Arvai AS, Rosnes I, Olsen ØE, Backe PH, Alseth I, Gao H, Cao W, Tainer JA, Bjørås M: Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nat Struct Mol Biol 2009, 16:138-143.
  • [51]Yao M, Hatahet Z, Melamede RJ, Kow YW: Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3′ endonuclease, from Escherichia coli. J Biol Chem 1994, 269:16260-16268.
  • [52]Zheng L, Gibbs MJ, Rodoni BC: Quantitative PCR measurements of the effects of introducing inosines into primers provides guidelines for improved degenerate primer design. J Virol Methods 2008, 153:97-103.
  • [53]Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY: A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 2002, 99:7877-7882.
  • [54]Eckert KA, Kunkel TA: High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res 1990, 18:3739-3744.
  • [55]Cline J, Braman JC, Hogrefe HH: PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 1996, 24:3546-3551.
  • [56]Lasken RS, Schuster DM, Rashtchian A: Archaebacterial DNA polymerases tightly bind uracil-containing DNA. J Biol Chem 1996, 271:17692-17696.
  • [57]PfuTurbo Cx Hotstart DNA Polymerase, Instruction Manual, Revision A.01 La Jolla, CA, USA: Agilent Technologies, Stratagene Products Division; 2009.
  • [58]Gill S, O’Neill R, Lewis RJ, Connolly BA: Interaction of the family-B DNA polymerase from the archaeon Pyrococcus furiosus with deaminated bases. J Mol Biol 2007, 372:855-863.
  • [59]Fujiwara H, Fujiwara K, Hashimoto K: PCR with deoxyinosine-containing primers using DNA polymerases with proofreading activity. PCR Methods Appl 1995, 4:239-240.
  • [60]REBASE Enzymes[http://rebase.neb.com/cgi-bin/over3list] webcite
  • [61]Clark JM: Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res 1988, 16:9677-9686.
  • [62]Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985, 33:103-119.
  • [63]The Registry of Standard Biological Parts[http://partsregistry.org] webcite
  • [64]Kibbe WA: OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 2007, 35:W43-W46.
  • [65]Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev SKH, Dryden DTF, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Krüger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, et al.: A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 2003, 31:1805-1812.
  • [66]Sieuwerts S, de Bok FAM, Mols E, de Vos WM, van Hylckama Vlieg JET: A simple and fast method for determining colony forming units. Lett Appl Microbiol 2008, 47:275-278.
  文献评价指标  
  下载次数:0次 浏览次数:3次