| BMC Biotechnology | |
| Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli | |
| Yulan Yi2  Huakai Sheng2  Zhimin Li1  Qin Ye2  | |
| [1] Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China | |
| [2] State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China | |
| 关键词: Proline 4-hydroxylases; Recombinant Escherichia coli; Recombinant Corynebacterium glutamicum; Trans-4-hydroxy-L-proline; | |
| Others : 834847 DOI : 10.1186/1472-6750-14-44 |
|
| received in 2014-02-07, accepted in 2014-05-15, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until now the production of trans-Hyp is mainly from the acid hydrolysis of collagen. Due to the increasing environmental concerns on those severe chemical processes and complicated downstream separation, it is essential to explore some environment-friendly processes such as constructing new recombinant strains to develop efficient process for trans-Hyp production.
Result
In this study, the genes of trans-proline 4-hydroxylase (trans-P4H) from diverse resources were cloned and expressed in Corynebacterium glutamicum and Escherichia coli, respectively. The trans-Hyp production by these recombinant strains was investigated. The results showed that all the genes from different resources had been expressed actively. Both the recombinant C. glutamicum and E. coli strains could produce trans-Hyp in the absence of proline and 2-oxoglutarate.
Conclusions
The whole cell microbial systems for trans-Hyp production have been successfully constructed by introducing trans-P4H into C. glutamicum and E. coli. Although the highest yield was obtained in recombinant E. coli, using recombinant C. glutamicum strains to produce trans-Hyp was a new attempt.
【 授权许可】
2014 Yi et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140715092412304.pdf | 395KB | ||
| Figure 2. | 38KB | Image | |
| Figure 1. | 39KB | Image |
【 图 表 】
Figure 1.
Figure 2.
【 参考文献 】
- [1]Kuttan R, Radhakrishnan AN: Biochemistry of the hydroxyprolines. Adv Enzymol 1973, 37:273-347.
- [2]Mai Hoa BT, Hibi T, Nasuno R, Matsuo G, Sasano Y, Takagi H: Production of N-acetyl cis-4-hydroxy-L-proline by the yeast N-acetyltransferase Mpr1. J Biosci Bioeng 2012, 114(2):160-165.
- [3]Remuzon P: Trans 4-Hydroxy-L-proline, a novel and versatile chiral starting block. Tetrahedron 1996, 52:13803-13835.
- [4]Wichmann CF, Liesch JM, Schwartz RE: L-671,329, a new antifungal agent. II. Structure determination. Antibiot 1989, 42(2):168-173.
- [5]Izumi Y, Chibata I, Itah T: Herstellung und Verwendung von Aminosäuren. Angew Chem 1978, 90(3):187-194.
- [6]Gorres KL, Raines RT: Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 2010, 45:106-124.
- [7]Hashimoto S, Katsumata R, Ochiai K: Process for producing optically active 4-hydroxy-2-ketoglutaric acid using microorganisms. US Patent5,607,848[P]. 1997-3-4
- [8]Serizawa N, Matsuoka T, Hosoya T, Furuya K: Fermentation production of trans-4-hydroxy-L-proline by Clonostachys cylindrospora. Biosci Biotech Biochem 1995, 59(3):555-557.
- [9]Onishi M, Okumura R, Okamoto R, Ishikura T: Proline hydroxylation by cell free extract of a streptomycete. Biochem Biophys Res Commun 1984, 120(1):45-51.
- [10]Lawrence CC, Sobey WJ, Field RA, Baldwin JE, Schofield CJ: Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: a 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis. Biochem J 1996, 313(1):185-191.
- [11]Baldwin JE, Field RA, Lawrence CC, Lee V, Robinson JK, Schofield CJ: Substrate specificity of proline 4-hydroxylase: chemical and enzymatic synthesis of 2S, 3R, 4S –epoxyproline. Tetrahedron Lett 1994, 35(26):4649-4652.
- [12]Shibasaki T, Mori H, Ozaki A: Enzymatic production of trans-4-Hydroxy -L-proline by region- and stereospecific hydroxylation of L-proline. Biosci Biotechno Biochem 2000, 64(4):746-750.
- [13]Falcioni F, Blamk LM, Oliver F, Andreas K, Bruno B, Schmid A: Proline availability regulates proline-4-hydroxylase synthesis and substrate uptake in proline-hydroxylating recombinant Escherichia coli. Appl Environ Microbiol 2013, 79:3091-3100.
- [14]Eggeling L, Bott M: Handbook of Corynebacterium glutamicum. Boca Raton: CRC Press; 2005:1-616.
- [15]Wolfgang L, Klaus H, Karlheinz D: Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 2005, 69:1-8.
- [16]Soo YL, Yang HK, Jiho M: Conversion of phenol to glutamate and proline in Corynebacterium glutamicum is regulated by transcriptional regulator ArgR. Appl Microbiol Biotechnol 2010, 85:713-720.
- [17]Masaaki W: Amino Acid Exporters in Corynebacterium glutamicum. Microbiol Monographs 2013, 23:335-349.
- [18]Jiang LY, Chen SG, Zhang YY, Liu JZ: Metabolic evolution of Coryne- bacterium glutamicum for increased production of L-ornithine. BMC Biotechnol 2013, 13:47. BioMed Central Full Text
- [19]Meiswinkela TM, Rittmannb D, Lindnera SN, Wendischa VF: Crude glycerol- based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 2013, 145:254-258.
- [20]Ikeda M, Nakagawa SL: The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 2003, 62(2/3):99-109.
- [21]Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruchert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A: The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 2003, 104(1/3):5-25.
- [22]Becker J, Wittmann C: Systems and synthetic metabolic engineering for amino acid production–the heartbeat of industrial strain development. Curr Opin Biotechnol 2012, 23(5):718-726.
- [23]Ikeda M, Katsumata R: Transport of aromatic amino acids and its influence on overproduction of the amino acids in Corynebacterium glutamicum. J Ferment Bioeng 1994, 78(6):420-425.
- [24]Shibasaki T, Hashimoto S, Mori H, Ozaki A: Construction of a novel hydroxyproline-producing recombinant Escherichia coli by introducing a proline 4-hydroxylase gene. J Biosci Bioeng 2000, 90(5):522-525.
- [25]Shibasaki T, Mori H, Chiba S, Ozaki A: Microbial Proline 4-Hydroxylase Screening and Gene Cloning. Appl Environ Microbiol 1999, 65(9):4028-4031.
- [26]Klein C, Hüttel W: A simple procedure for selective hydroxylation of l-Proline and l-Pipecolic acid with recombinantly expressed proline hydroxylases. Adv Synth Catal 2011, 353(8):1375-1383.
- [27]Hayes CS, Bose B, Sauer RT: Stop codons preceded by rare arginine codons are efficient determinants of ssrA tagging in Escherichia coli. Proc Natl Acad Sci U S A 2002, 99(6):3440-3445.
- [28]Gustafsson C, Govindarajan S, Minshull J: Codon bias and heterologous protein expression. Trends Biotechnol 2004, 22:346-353.
- [29]Ahn SJ, Seo JS, Kim MS, Jeon SJ, Kim NY, Jang JH, Kim KH, Hong YK, Chung JK, Lee HH: Cloning, site-directed mutagenesis and expression of cathepsin L-like cysteine protease from Uronema marinum (Ciliophora: Scuticociliatida). Mol Biochem Parasitol 2007, 156(2):191-198.
- [30]Retnoningrum DS, Pramesti HT, Santika PY, Valerius O, Asjarie S, Suciati T: Codon optimization for high level expression of human bone morphogenetic protein– 2 in Escherichia coli. Protein Expr Purif 2012, 84:188-194.
- [31]Blank LM, Ebert BE, Buehler K, Bühler B: Redox Biocatalysis and Metabolism: Molecular Mechanisms and Metabolic Network Analysis. Antioxid Redox 527 Signal 2010, 13:349-394.
- [32]Tsuchida T, Kubota K, Yoshinage F: Improvement of L-proline production by sulfaguanidine resistant mutants derived from L-glutamic acid-producing bacteria. Agric Biol Chem 1986, 50(9):2201-2207.
- [33]Nakanishi T, Hagino H: Process for producing L-proline by fermentation. US Patent 1984, 4:444,885.
- [34]Yu BQ, Shen W, Zhuge J: An improved method for integrative electro transformation of Corynebacterium glutamicum with xenogeneic DNA. China Biotechnol 2005, 25(2):78-81.
- [35]Yin MW, Nan YM, Wang XM: Improvement of the spectrophotometric method for the determination of hydroxyproline. J Henan Med Univ 1994, 29:74-77.
PDF