期刊论文详细信息
Allergy, Asthma & Clinical Immunology
The potential mechanistic link between allergy and obesity development and infant formula feeding
Bodo C Melnik1 
[1] Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, DE-49090 Osnabrück, Germany
关键词: Regulatory T-cell;    Postnatal growth acceleration;    Obesity;    mTORC1;    Infant formula;    FoxP3;    Breastfeeding;    Allergy;   
Others  :  1082141
DOI  :  10.1186/1710-1492-10-37
 received in 2014-05-19, accepted in 2014-07-15,  发布年份 2014
PDF
【 摘 要 】

This article provides a new view of the cellular mechanisms that have been proposed to explain the links between infant formula feeding and the development of atopy and obesity. Epidemiological evidence points to an allergy- and obesity-preventive effect of breastfeeding. Both allergy and obesity development have been traced back to accelerated growth early in life. The nutrient-sensitive kinase mTORC1 is the master regulator of cell growth, which is predominantly activated by amino acids. In contrast to breastfeeding, artificial infant formula feeding bears the risk of uncontrolled excessive protein intake overactivating the infant’s mTORC1 signalling pathways. Overactivated mTORC1 enhances S6K1-mediated adipocyte differentiation, but negatively regulates growth and differentiation of FoxP3+ regulatory T-cells (Tregs), which are deficient in atopic individuals. Thus, the “early protein hypothesis” not only explains increased mTORC1-mediated infant growth but also the development of mTORC1-driven diseases such as allergy and obesity due to a postnatal deviation from the appropriate axis of mTORC1-driven metabolic and immunologic programming. Remarkably, intake of fresh unpasteurized cow’s milk exhibits an allergy-preventive effect in farm children associated with increased FoxP3+ Treg numbers. In contrast to unprocessed cow’s milk, formula lacks bioactive immune-regulatory microRNAs, such as microRNA-155, which plays a major role in FoxP3 expression. Uncontrolled excessive protein supply by formula feeding associated with the absence of bioactive microRNAs and bifidobacteria in formula apparently in a synergistic way result in insufficient Treg maturation. Treg deficiency allows Th2-cell differentiation promoting the development of allergic diseases. Formula-induced mTORC1 overactivation is thus the critical mechanism that explains accelerated postnatal growth, allergy and obesity development on one aberrant pathway.

【 授权许可】

   
2014 Melnik; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141204123913923.pdf 669KB PDF download
Figure 2. 53KB Image download
Figure 1. 31KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, Trikalinos T, Lau J: Breastfeeding and maternal and infant health outcomes in developed countries. Evid Report Technol Assess 2007, 153:1-186.
  • [2]Fleischer DM, Spergel JM, Assa’ad AH, Pongracic JA: Primary prevention of allergic disease through nutritional interventions. J Allergy Clin Immunol Pract 2013, 1:29-36.
  • [3]Bryder L: From breast to bottle: a history of modern infant feeding. Endeavour 2009, 33:54-59.
  • [4]Marriott WM, Schoenthal L: An experimental study of the use of unsweetened evaporated milk for the preparation of infant feeding formulas. Arch Pediatr 1929, 46:135-148.
  • [5]Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 1994, 369:756-758.
  • [6]Vézina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 1975, 28:721-726.
  • [7]Inoki K, Ouyang H, Li Y, Guan KL: Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005, 69:79-100.
  • [8]Foster KG, Fingar DC: Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010, 285:14071-14077.
  • [9]Zoncu R, Efeyan A, Sabatini DM: mTOR. From growth signal integration to cancer, diabetes and aging. Nat Rev Mol Cell Biol 2011, 12:21-35.
  • [10]Betz C, Hall MN: Where is mTOR and what is it doing there? J Cell Biol 2013, 203:563-574.
  • [11]Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N: Amino acid regulation of TOR complex 1. Am J Physiol Endocrinol Metab 2009, 296:592-602.
  • [12]Kim J, Guan KL: Amino acid signaling in TOR activation. Annu Rev Biochem 2011, 80:1001-1032.
  • [13]Efeyan A, Zoncu R, Sabatini DM: Amino acids and mTORC1: from lysosomes to disease. Trend Mol Med 2012, 18:524-533.
  • [14]Kim SG, Buel GR, Blenis J: Nutrient regulation of the mTOR complex 1 signaling pathway. Mol Cells 2013, 35:463-473.
  • [15]Bar-Peled L, Sabatini DM: Regulation of mTORC1 by amino acids. Trends Cell Biol 2014, 24:400-406.
  • [16]Dodd KM, Tee AR: Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 2012, 302:E1329-E1342.
  • [17]Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN: Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012, 47:349-358.
  • [18]Bounous G, Kongshavn PA, Taveroff A, Gold P: Evolutionary traits in human milk proteins. Med Hypotheses 1988, 27:133-140.
  • [19]Litonjua AA, Gold DR: Asthma and obesity: common early-life influences in the inception of disease. J Allergy Clin Immunol 2008, 121:1075-1084.
  • [20]Paul IM, Camera L, Zeiger RS, Guilbert TW, Bacharier LB, Taussig LM, Morgan WJ, Covar RA, Krawiec M, Bloombrg GR, Mauger DT, Childhood Asthma Research and Education (CARE) Network: Relationship between infant weight gain and later asthma. Pediatr Allergy Immunol 2010, 21:82-89.
  • [21]Liu X, Olsen J, Agerbo E, Yuan W, Cnattingius S, Gissler M, Li J: Birth weight, gestational age, fetal growth and childhood asthma hospitalization. Allergy Asthma Clin Immunol 2014, 10:13.
  • [22]Sonnenschein-van der Voort AM, Arends LR, de Jongste JC, Annesi-Maesano I, Arshad SH, Barros H, Basterrechea M, Bisgaard H, Chatzi L, Corpeleijn E, Correia S, Craig LC, Devereux G, Dogaru C, Dostal M, Duchen K, Eggesbø M, van der Ent CK, Fantini MP, Forastiere F, Frey U, Gehring U, Gori D, van der Gugten AC, Hanke W, Henderson AJ, Heude B, Iñiguez C, Inskip HM, Keil T: Preterm birth, infant weight gain, and childhood asthma risk: A meta-analysis of 147,000 European children. J Allergy Clin Immunol 2014, 133:1317-1329.
  • [23]Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, Beyer J, Demmelmair H, Gruszfeld D, Dobrzanska A, Sengier A, Langhendries JP, Rolland Cachera MF, Grote V, European Childhood Obesity Trial Study Group: Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr 2009, 89:1836-1845.
  • [24]Escribano J, Luque V, Ferre N, Mendez-Riera G, Koletzko B, Grote V, Demmelmair H, Bluck L, Wright A, Closa-Monasterolo R, European Childhood Obesity Trial Study Group: Effect of protein intake and weight gain velocity on body fat mass at 6 months of age: the EU Childhood Obesity Programme. Int J Obes 2012, 36:548-553.
  • [25]Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries JP, Dain E, Giovannini M, Verduci E, Gruszfeld D, Socha P, Koletzko B, European Childhood Obesity Trial Study Group: Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. Am J Clin Nutr 2014, 99:1-11.
  • [26]Melnik BC: Excessive leucine-mTORC1-signalling of cow milk-based infant formula: the missing link to understand early childhood obesity. J Obes 2012, 2012:197653.
  • [27]Hersoug LG, Linneberg A: The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance? Allergy 2007, 62:1205-1213.
  • [28]Gorgievska-Sukaroovska B, Lipozencic J, Susac A: Obesity and allergic diseases. Acta Dermatovenerol Croat 2008, 16:231-235.
  • [29]Ford ES: The epidemiology of obesity and asthma. J Allergy Clin Immunol 2005, 115:897-909.
  • [30]Brüske I, Flexeder C, Heinrich J: Body mass index and the incidence of asthma in children. Curr Opin Allergy Clin Immunol 2014, 14:155-160.
  • [31]Fox CJ, Hammerman PS, Thompson CB: Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005, 5:844-852.
  • [32]Powell JD, Delgoffe GM: The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010, 33:301-311.
  • [33]Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, Xiao B, Worley PF, Powell JD: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011, 12:295-303.
  • [34]Fumarola C, La Monica S, Guidotti GG: Amino acid signaling through the mammalian target of rapamycin (mTOR) pathway: role of glutamine and of cell shrinkage. J Cell Physiol 2005, 204:155-165.
  • [35]Cobbold SP, Adams E, Farquhar CA, Nolan KF, Howie D, Lui KO, Fairchild PJ, Mellor AL, Ron D, Waldmann H: Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A 2009, 106:12055-12060.
  • [36]Mushaben EM, Kramer EL, Brandt EB, Khurana Hershey GK, Le Cras TD: Rapamycin attenuates airway hyperreactivity, goblet cells, and IgE in experimental allergic asthma. J Immunol 2011, 187:5756-5763.
  • [37]Mushaben EM, Brandt EB, Hershey GK, Le Cras TD: Differential effects of rapamycin and dexamethasone in mouse models of established allergic asthma. PLoS One 2013, 8:e54426.
  • [38]McDaniel ML, Marshall CA, Pappan KL, Kwon G: Metabolic and autocrine regulation of the mammalian target of rapamycin by pancreatic β-cells. Diabetes 2002, 51:2877-2885.
  • [39]Nair KS, Short KR: Hormonal and signaling role of branched-chain amino acids. J Nutr 2005, 135:1547S-1552S.
  • [40]Axelsson IE, Ivarsson SA, Räihä NC: Protein intake in early infancy: effects on plasma amino acid concentrations, insulin metabolism, and growth. Pediatr Res 1989, 26:614-617.
  • [41]Socha P, Grote V, Gruszfeld D, Janas R, Demmelmair H, Closa-Monasterolo R, Subías JE, Scaglioni S, Verduci E, Dain E, Langhendries JP, Perrin E, Koletzko B, European Childhood Obesity Trial Study Group: Milk protein intake, the metabolic-endocrine response, and growth in infancy: data from a randomized clinical trial. Am J Clin Nutr 2011, 94:1776-1784.
  • [42]O’Sullivan A, He X, McNiven EM, Haggarty NW, Lönnerdal B, Slupsky CM: Early diet impacts infant Rhesus gut microbiome, immunity, and metabolism. J Proteome Res 2013, 12:2833-2845.
  • [43]Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML: Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic beta-cells. Diabetes 2001, 50:353-360.
  • [44]Li M, Li C, Allen A, Stanley CA, Smith TJ: The structure and allosteric regulation of mammalian glutamate dehydrogenase. Arch Biochem Biophys 2012, 519:69-80.
  • [45]Lorin S, Tol MJ, Bauvy C, Strijland A, Poüs C, Verhoeven AJ, Codogno P, Meijer AJ: Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 2013, 9:850-860.
  • [46]Duran RV, Hall MN: Glutaminolysis feeds mTORC1. Cell Cycle 2012, 11:4107-4108.
  • [47]Thissen JP, Ketelslegers JM, Underwood LE: Nutritional regulation of the insulin-like growth factors. Endocr Rev 1994, 15:80-101.
  • [48]Ketelslegers JM, Maiter D, Maes M, Underwood LE, Thissen JP: Nutritional regulation of the insulin- like growth factor-I. Metabolism 1995, 44:50-57.
  • [49]Thissen JP, Pucilowska JB, Underwood LE: Differential regulation of the insulin-like growth factor I (IGF-I) and IGF binding protein-1 messenger ribonucleic acids by amino acid availability and growth hormone in rat hepatocyte primary culture. Endocrinology 1994, 134:1570-1576.
  • [50]Sen P, Mukherjee S, Ray D, Raha S: Involvement of the Akt/PKB signaling pathway with disease processes. Mol Cell Biochem 2003, 253:241-246.
  • [51]Harada Y, Harada Y, Elly C, Ying G, Paik JH, DePinho RA, Liu YC: Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med 2010, 207:1381-1391.
  • [52]Haxhinasto S, Mathis D, Benoist C: The AKT-mTOR axis regulates de novo differentiation of CD4 + FoxP3+ cells. J Exp Med 2008, 205:565-574.
  • [53]Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E, Shokat KM, Fisher AG, Merkenschlager M: T cell receptor signaling controls FoxP3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 2008, 105:7797-7802.
  • [54]Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, Worley PF, Kozma SC, Powell JD: The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009, 30:832-844.
  • [55]Josefowicz SZ, Lu LF, Rudensky AY: Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012, 30:531-564.
  • [56]Wilson KF, McMains KC, Orlandi RR: The association between allergy and chronic rhinosinusitis with and without nasal polyps: an evidence-based review with recommendations. Int Forum Allergy Rhinol 2014, 4:93-103.
  • [57]Xu G, Xia J, Hua X, Zhou H, Yu C, Liu Z, Cai K, Shi J, Li H: Activated mammalian target is associated with T regulatory cell insufficiency in nasal polyps. Respir Res 2009, 10:13.
  • [58]Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H: mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 2013, 499:485-490.
  • [59]Chen H, Zhang L, Zhang H, Xiao Y, Shao L, Li H, Yin H, Wang R, Liu G, Corley D, Yang Z, Zhao Y: Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice. FASEB J 2013, 27:3979-3990.
  • [60]Wing JB, Sakaguchi S: Foxp3+ Treg cells in humoral immunity. Int Immunol 2014, 26:61-69.
  • [61]Akdis CA, Akdis M: Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 2009, 123:735-746.
  • [62]Palomares O, Yaman G, Azkur A, Akkoc T, Akdis M, Akdis CA: Role of Treg in immune regulation of allergic diseases. Eur J Immunol 2010, 40:1232-1240.
  • [63]Ostroukhova M, Ray A: CD25+ T cells and regulation of allergen-induced responses. Curr Allergy Asthma Rep 2005, 5:35-41.
  • [64]Fujita H, Meyer N, Akdis M, Akdis CA: Mechanisms of immune tolerance to allergens. Chem Immunol Allergy 2012, 96:30-38.
  • [65]Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska MK, Demkow R: Frequency and activation of CD4+CD25highFoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol 2013, 162:16-24.
  • [66]Kawayama T, Matsunaga K, Kaku Y, Yamaguchi K, Kinoshita T, O’Byrne PM, Hoshino T: Decreased CTLA4+ and Foxp3+ CD25highCD4+ cells in induced sputum from patients with mild atopic asthma. Allergol Int 2013, 62:203-213.
  • [67]Bezirtzoglou E, Tsiotsias A, Welling GJ: Microbiota profile in feces of breast- and formula-fed newborns by using in situ hybridization (FISH). Anaerobe 2011, 17:478-482.
  • [68]Gueimonde M, Laitinen K, Salminen S, Isolauri E: Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 2007, 92:64-66.
  • [69]Solís G, de Los Reyes-Gavilan CG, Fernández N, Margolles A, Gueimonde M: Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010, 16:307-310.
  • [70]Heine RG: Preventing atopy and allergic disease. Nestle Nutr Inst Workshop Ser 2014, 78:141-153.
  • [71]Konieczna P, Akdis CA, Quigley EM, Shanahan F, O’Mahony L: Portrait of an immunoregulatory Bifidobacterium. Gut Microbes 2012, 3:261-266.
  • [72]Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, Quigley EM, Kiely B, Akdis CA, O’Mahony L: Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut 2012, 61:354-366.
  • [73]Donkor ON, Ravikumar M, Proudfoot O, Day SL, Apostolopoulos V, Paukovics G, Vasiljevic T, Nutt SL, Gill H: Cytokine profile and induction of T helper type 17 and regulatory T cells by human peripheral mononuclear cells after microbial exposure. Clin Exp Immunol 2012, 167:282-295.
  • [74]von Mutius E, Vercelli D: Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 2010, 10:861-868.
  • [75]Perkin MR, Strachan DP: Which aspects of the farming lifestyle explain the inverse association with childhood allergy? J Allergy Clin Immunol 2006, 117:1374-1381.
  • [76]Loss G, Apprich S, Waser M, Kneifel W, Genuneit J, Büchele G, Weber J, Sozanska B, Danielewicz H, Horak E, van Neerven RJ, Heederik D, Lorenzen PC, von Mutius E, Braun-Fahrländer C, GABRIELA study group: The protective effect of farm milk consumption on childhood asthma and atopy: the GABRIELA study. J Allergy Clin Immmunol 2011, 128:766-773.
  • [77]Braun-Fahrländer C, von Mutius E: Can farm milk consumption prevent allergic diseases? Clin Exp Allergy 2011, 41:29-35.
  • [78]Illi S, Depner M, Genuneit J, Horak E, Loss G, Strunz-Lehner C, Büchele G, Boznanski A, Danielewicz H, Cullinan P, Heederik D, Braun-Fahrländer C, von Mutius E, GABRIELA Study Group: Protection from childhood asthma and allergy in Alpine farm environments – the GABRIEL Advanced Studies. J Allergy Clin Immunol 2012, 129:1470-1477.
  • [79]Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, Dalphin JC, Dalphin ML, Riedler J, von Mutius E, Weber J, Kabesch M, Michel S, Braun-Fahrländer C, Lauener R, PASTURE study group: Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol 2012, 130:523-530.
  • [80]von Mutius E: Maternal farm exposure/ingestion of unpasteurized cow’s milk and allergic disease. Current Opin Gastroenterol 2012, 28:570-576.
  • [81]Wlasiuk G, Vercelli D: The farm effect, or: when, what and how a farming environment protects from asthma and allergic disease. Curr Opin Allergy Clin Immunol 2012, 12:461-466.
  • [82]Lluis A, Schaub B: Lessons from the farm environment. Curr Opin Allergy Clin Immunol 2012, 12:158-163.
  • [83]Sozanska B, Pearce N, Dudek K, Cullinan P: Consumption of unpasteurized milk and its effects on atopy and asthma in children and adult inhabitants in rural Poland. Allergy 2013, 68:644-650.
  • [84]Lluis A, Depner M, Gaugler B, Saas P, Casaca VI, Raedler D, Michel S, Tost J, Liu J, Genuneit J, Pfefferle P, Roponen M, Weber J, Braun-Fahrländer C, Riedler J, Lauener R, Vuitton DA, Dalphin JC, Pekkanen J, von Mutius E, Schaub B, Protection Against Allergy: Study in Rural Environments Study Group: Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood. J Allergy Clin Immunol 2014, 133:551-559.
  • [85]Hata T, Murakami K, Nakatani H, Yamamoto Y, Matsuda T, Aoki N: Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun 2010, 396:528-533.
  • [86]Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY: Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010, 20:1128-1137.
  • [87]Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M: Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci 2012, 95:4831-4841.
  • [88]Admyre C, Johansson SM, Qazi KR, Filén JJ, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S: Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007, 179:1969-1978.
  • [89]Kosaka N, Izumi H, Sekine K, Ochiya T: microRNA as a new immune-regulatory agent in breast milk. Silence 2010, 1:7.
  • [90]Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012, 8:118-123.
  • [91]Chen X, Liang H, Zhang J, Li Q, Wang T, Zhu Q, Zhou X, Wang X, Gao X, Li X: Horizontal transfer of microRNAs: molecular mechansism and clinical applications. Protein Cell 2012, 3:28-37.
  • [92]Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ: B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996, 183:1161-1172.
  • [93]Mittelbrunn M, Guitiérrez-Vásquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F: Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011, 2:282.
  • [94]Mittelbrunn M, Sanchez-Madrid F: Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012, 13:328-335.
  • [95]Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F: Transfer of extracellular vesicles during immune cell-cell interactions. Immunol Rev 2013, 251:125-142.
  • [96]Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L: Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell 2013, 4:197-210.
  • [97]Munch EM, Harris AA, Mohammad M, Benham AL, Pejerrey SM, Showalter L, Hu M, Shope CD, Maningat PD, Gunaratne PH, Haymond M, Aagaard K: Transcriptome profiling of microRNA by next-Gen deep sequencing reveals known and novel species in the lipid fraction of human breast milk. PLoS One 2013, 8:e50564.
  • [98]Kohlhaas S, Garden OA, Scudamore C, Turner M, Okkenhaug K, Vigorito E: Cutting edge: the FoxP3 target miR-155 contributes to the development of regulatory T cells. J Immunol 2009, 182:2578-2582.
  • [99]Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H, Young RA: Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007, 445:931-935.
  • [100]Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med 2006, 203:2519-2527.
  • [101]Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY: Genome-wide analysis of FoxP3 target genes in developing and mature regulatory T cells. Nature 2007, 445:936-940.
  • [102]Lio CW, Hsieh CS: A two-step process for thymic regulatory T cell development. Immunity 2008, 28:100-111.
  • [103]Burchill MA, Yang J, Vang KB, Moon JJ, Chu HH, Lio CW, Vegoe AL, Hsieh CS, Jenkins MK, Farrar MA: Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 2008, 28:112-121.
  • [104]Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA: IL-2, -7, and -15 but not stromal lymphopoetin, redundantly govern CD4 + FoxP3+ regulatory T cell development. J Immunol 2008, 181:3285-3290.
  • [105]Lu LF, Thai TH, Calado D, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009, 30:80-91.
  • [106]Melnik BC, John SM, Schmitz G: Milk: an exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? J Transl Med 2014, 12:43.
  • [107]van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 2001, 121:337-349.
  • [108]Wang GJ, Liu Y, Qin A, Shah SV, Deng ZB, Xiang X, Cheng Z, Liu C, Wang J, Zhang L, Grizzle WE, Zhang HG: Thymus exosomes-like particles induce regulatory T cells. J Immunol 2008, 181:5242-5248.
  • [109]Skogberg G, Gudmundsdottir J, van der Post S, Sandström K, Bruhn S, Benson M, Mincheva-Nilsson L, Baranov V, Telemo E, Ekwall O: Characterization of human thymic exosomes. PLoS One 2013, 8:e67554.
  • [110]Melnik BC, John SM, Schmitz G: Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J 2013, 12:103.
  • [111]Brenna JT, Lapillonne A: Background paper on fat and fatty acid requirements during pregnancy and lactation. Ann Nutr Metab 2009, 55:97-122.
  • [112]Miles EA, Clader PC: Omega-6 amd omega-3 polyunsaturated fatty acids and allergic diseases in infancy and childhood. Curr Pharm Des 2014, 20:946-953.
  • [113]Hageman JH, Hooyenga P, Diersen-Schade DA, Scalabrin DM, Wichers HJ, Birch EE: The impact of dietary long-chain polyunsaturated fatty acids on respiratory illness in infants and children. Curr Allergy Asthma Rep 2012, 12:564-573.
  • [114]Calder PC, Kremmyda LS, Vlachava M, Noakes PS, Miles EA: Is there a role for fatty acids in early life programming of the immune system. Proc Nutr Soc 2010, 69:373-380.
  • [115]van den Elsen LW, van Esch BC, Hofman GA, Kant J, van de Heijning BJ, Garssen J, Willemsen LE: Dietary long chain n-3 polyunsaturated fatty acids prevent allergic sensitization to cow’s milk protein in mice. Clin Exp Allergy 2013, 43:798-810.
  • [116]van den Elsen LW, Meulenbroek LA, van Esch BC, Hofman GA, Boon L, Garssen J, Willemsen LE: CD25+ regulatory T cells transfer n-3 long chain polyunsaturated fatty acids-induced tolerance in mice allergic to cow’s milk protein. Allergy 2013, 68:1562-1570.
  • [117]Yasuda M, Tanak Y, Kume S, Morita Y, Chin-Kanasaki M, Araki H, Isshiki K, Araki S, Koya D, Haneda M, Kashiwagi A, Maegawa H, Uzu T: Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apotosis in podocytes. Biochim Biophys Acta 1842, 2014:1097-1108.
  • [118]Zivkovic AM, German JB, Lebrilla CB, Mills DA: Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 2011, 108(Suppl 1):4653-4658.
  • [119]Sela DA, Mills DA: Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 2010, 18:298-307.
  • [120]Garrido D, Bariel D, Mills DA: A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 2012, 3:415S-421S.
  • [121]Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA: Utilization of galactooligosaccarides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 2013, 33:262-270.
  • [122]Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, Trengove N, Lai CT, Filgueira L, Blancafort P, Hartmann PE: Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells 2012, 30:2164-2174.
  • [123]Indumathi S, Dhanasekaran M, Rajkumar JS, Sudarsanam D: Exploring the stem cell and non-stem cell constituents of human breast milk. Cytotechnology 2013, 65:385-393.
  • [124]Sibley CP, Brownbill , Dilworth M, Glazier JD: Review: adaptation in placental nutrient supply to meet fetal growth demand: implications for programming. Placenta 2010, 31:70-74.
  • [125]Boney CM, Verma A, Tucker R, Vohr BR: Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005, 115:e290-e296.
  • [126]Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A: Birth weigth and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 2007, 165:849-857.
  • [127]Tedner SG, Örtqvist AK, Almqvist C: Fetal growth and risk of childhood asthma and allergic diseases. Clin Exp Allergy 2012, 42:1430-1447.
  • [128]Lager S, Powell TL: Regulation of nutrient transport across the placenta. J Pregnancy 2012, 2012:179827.
  • [129]Jansson N, Rosario FJ, Gaccioli F, Lager S, Jones HN, Roos S, Jansson T, Powell TL: Activation of placental mTOR singaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 2013, 98:105-113.
  • [130]Olsen SF, Halldorsson TI, Willett WC, Knudsen VK, Gillman MW, Mikkelsen TB, Olsen J, and the NUTRIX Consortium: Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort sudy. Am J Clin Nutr 2007, 86:1104-1110.
  • [131]Heppe DH, van Dam RM, Willemsen SP, den Breeijen H, Raat H, Hofman A, Steegers EA, Jaddoe VW: Maternal milk consumption, fetal growth, and the risks of neonatal complications: the Generation R Study. Am J Clin Nutr 2011, 94:501-509.
  • [132]Wiley AS: Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach. Am J Hum Biol 2012, 24:130-138.
  • [133]Rowe J, Kusel M, Holt BJ, Suriyaarachchi D, Serralha M, Hollams E, Yerkovich ST, Subrata LS, Ladyman C, Sadowska A, Gillett J, Fisher E, Loh R, Soderstrom L, Ahlstedt S, Sly PD, Holt PG: Prenatal versus postnatal sensitization to environmental allergens in a high-risk birth cohort. J Allergy Clin Immunol 2007, 119:1164-1173.
  • [134]King FT: Feeding and Care of the Baby. London: Macmillan; 1913.
  文献评价指标  
  下载次数:35次 浏览次数:35次