期刊论文详细信息
Biology of Mood & Anxiety Disorders
Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology
Melanie P Leussis1  Jon M Madison1  Tracey L Petryshen1 
[1] Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
关键词: Synapse;    Neurogenesis;    GABA;    Nodes of Ranvier;    Axon initial segment;    GWAS;    Genome-wide association study;    Schizophrenia;    Bipolar disorder;    Ankyrin G;   
Others  :  792086
DOI  :  10.1186/2045-5380-2-18
 received in 2012-06-20, accepted in 2012-08-20,  发布年份 2012
PDF
【 摘 要 】

Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.

【 授权许可】

   
2012 Leussis et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705024044590.pdf 1104KB PDF download
Figure 2 . 112KB Image download
Figure 1 . 32KB Image download
【 图 表 】

Figure 1 .

Figure 2 .

【 参考文献 】
  • [1]Barnett JH, Smoller JW: The genetics of bipolar disorder. Neuroscience 2009, 164:331-343.
  • [2]Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET: A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 2011, 13:1-15.
  • [3]Langan C, McDonald C: Neurobiological trait abnormalities in bipolar disorder. Mol Psychiatry 2009, 14:833-846.
  • [4]Newberg AR, Catapano LA, Zarate CA, Manji HK: Neurobiology of bipolar disorder. Expert Rev Neurother 2008, 8:93-110.
  • [5]Brambilla P, Hatch JP, Soares JC: Limbic changes identified by imaging in bipolar patients. Curr Psychiatry Rep 2008, 10:505-509.
  • [6]Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA, Machado-Vieira R: Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 2012. [Epub ahead of print]
  • [7]Schloesser RJ, Martinowich K, Manji HK: Mood-stabilizing drugs: mechanisms of action. Trends Neurosci 2012, 35:36-46.
  • [8]Manji HK, Bersudsky Y, Chen G, Belmaker RH, Potter WZ: Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 1996, 15:370-381.
  • [9]Klein PS, Melton DA: A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996, 93:8455-8459.
  • [10]Sutherland C: What are the bona fide GSK3 substrates? Int J Alzheimers Dis 2011, 2011:505607.
  • [11]Boku S, Nakagawa S, Masuda T, Nishikawa H, Kato A, Kitaichi Y, Inoue T, Koyama T: Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3beta and beta-catenin/TCF pathway. Neuropsychopharmacology 2009, 34:805-815.
  • [12]Kendler KS, Pedersen NL, Neale MC, Mathe AA: A pilot Swedish twin study of affective illness including hospital- and population-ascertained subsamples: results of model fitting. Behav Genet 1995, 25:217-232.
  • [13]Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J: High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 2004, 161:1814-1821.
  • [14]Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM: Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009, 373:234-239.
  • [15]McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A: The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 2003, 60:497-502.
  • [16]Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK: Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006, 60:93-105.
  • [17]Craddock N, Sklar P: Genetics of bipolar disorder: successful start to a long journey. Trends Genet 2009, 25:99-105.
  • [18]Alaerts M, Del-Favero J: Searching genetic risk factors for schizophrenia and bipolar disorder: learn from the past and back to the future. Hum Mutat 2009, 30:1139-1152.
  • [19]Sullivan PF, Daly MJ, O'Donovan M: Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012, 13:537-551.
  • [20]Ioannidis JP, Thomas G, Daly MJ: Validating, augmenting and refining genome-wide association signals. Nat Rev Genet 2009, 10:318-329.
  • [21]Campbell P: A decade for psychiatric genetics. Nature 2010., 463
  • [22]Pe'er I, Yelensky R, Altshuler D, Daly MJ: Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 2008, 32:381-385.
  • [23]Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, Cichon S, Rietschel M, Nothen MM, et al.: A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008, 13:197-207.
  • [24]Weber H, Kittel-Schneider S, Gessner A, Domschke K, Neuner M, Jacob CP, Buttenschon HN, Boreatti-Hummer A, Volkert J, Herterich S, et al.: Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD. Neuropsychopharmacology 2011, 36:2076-2085.
  • [25]Berridge MJ, Downes CP, Hanley MR: Neural and developmental actions of lithium: a unifying hypothesis. Cell 1989, 59:411-419.
  • [26]Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, et al.: Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008, 40:1056-1058.
  • [27]Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJ, Kassem L, Park JH, Chatterjee N, Jamain S, et al.: Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 2011. Dec 20 [Epub ahead of print]
  • [28]Lee KW, Woon PS, Teo YY, Sim K: Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neurosci Biobehav Rev 2011, 36:556-571.
  • [29]Schulze TG, Detera-Wadleigh SD, Akula N, Gupta A, Kassem L, Steele J, Pearl J, Strohmaier J, Breuer R, Schwarz M, et al.: Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol Psychiatry 2009, 14:487-491.
  • [30]Scott LJ, Muglia P, Kong XQ, Guan W, Flickinger M, Upmanyu R, Tozzi F, Li JZ, Burmeister M, Absher D, et al.: Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc Natl Acad Sci U S A 2009, 106:7501-7506.
  • [31]Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, Byerley W, Coryell W, Craig D, Edenberg HJ, et al.: Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry 2009, 14:755-763.
  • [32]Takata A, Kim SH, Ozaki N, Iwata N, Kunugi H, Inada T, Ujike H, Nakamura K, Mori N, Ahn YM, et al.: Association of ANK3 with bipolar disorder confirmed in East Asia. Am J Med Genet B Neuropsychiatr Genet 2011, 156B:312-315.
  • [33]Kloiber S, Czamara D, Karbalai N, Muller-Myhsok B, Hennings J, Holsboer F, Lucae S: ANK3 and CACNA1C - missing genetic link for bipolar disorder and major depressive disorder in two German case–control samples. J Psychiatr Res 2012, 46:973-979.
  • [34]Tesli M, Koefoed P, Athanasiu L, Mattingsdal M, Gustafsson O, Agartz I, Rimol LM, Brown A, Wirgenes KV, Smorr LL, et al.: Association analysis of ANK3 gene variants in nordic bipolar disorder and schizophrenia case–control samples. Am J Med Genet B Neuropsychiatr Genet 2011, 156B:969-974.
  • [35]Lett TA, Zai CC, Tiwari AK, Shaikh SA, Likhodi O, Kennedy JL, Muller DJ: ANK3, CACNA1C and ZNF804A gene variants in bipolar disorders and psychosis subphenotype. World J Biol Psychiatry 2011, 12:392-397.
  • [36]Gella A, Segura M, Durany N, Pfuhlmann B, Stober G, Gawlik M: Is Ankyrin a genetic risk factor for psychiatric phenotypes? BMC Psychiatry 2011, 11:103. BioMed Central Full Text
  • [37]Belmonte Mahon P, Pirooznia M, Goes FS, Seifuddin F, Steele J, Lee PH, Huang J, Hamshere ML, Depaulo JR, Kelsoe JR, et al.: Genome-wide association analysis of age at onset and psychotic symptoms in bipolar disorder. Am J Med Genet Part B, Neuropsychiatric genetics: the official publication of the International Society of Psychiatric Genetics 2011, 156B:370-378.
  • [38]Landaas ET, Johansson S, Halmoy A, Oedegaard KJ, Fasmer OB, Haavik J: Bipolar disorder risk alleles in adult ADHD patients. Gene Brain Behav 2011, 10:418-423.
  • [39]Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, Gordon-Smith K, Fraser C, Forty L, Russell E, et al.: The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 2010, 15:1016-1022.
  • [40]Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, Jones I, Forty L, Jones L, Gordon-Smith K, et al.: Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Mol Psychiatry 2012. [Epub ahead of print]
  • [41]Liu Y, Blackwood DH, Caesar S, de Geus EJ, Farmer A, Ferreira MA, Ferrier IN, Fraser C, Gordon-Smith K, Green EK, et al.: Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Mol Psychiatry 2011, 16:2-4.
  • [42]Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E, Owen MJ, O'Donovan MC: Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009, 14:252-260.
  • [43]Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sorensen KM, Andersen PS, Nordentoft M, Werge T, Pedersen CB, et al.: CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 2010, 15:119-121.
  • [44]Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P: Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009, 460:748-752.
  • [45]Friedlander DR, Milev P, Karthikeyan L, Margolis RK, Margolis RU, Grumet M: The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 1994, 125:669-680.
  • [46]Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X, Strohmaier J, Steffens M, Meesters C, Herms S, Weingarten M, et al.: Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 2011, 88:372-381.
  • [47]Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N, Edenberg HJ, Nurnberger JI, Rietschel M, Blackwood D, et al.: Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011, 43:977-983.
  • [48]Cottrell JR, Borok E, Horvath TL, Nedivi E: CPG2: a brain- and synapse-specific protein that regulates the endocytosis of glutamate receptors. Neuron 2004, 44:677-690.
  • [49]Green EK, Grozeva D, Forty L, Gordon-Smith K, Russell E, Farmer A, Hamshere M, Jones IR, Jones L, McGuffin P, et al.: Association at SYNE1 in both bipolar disorder and recurrent major depression. Mol Psychiatry 2012. [Epub ahead of print]
  • [50]Kenzelmann D, Chiquet-Ehrismann R, Tucker RP: Teneurins, a transmembrane protein family involved in cell communication during neuronal development. Cell Mol Life Sci 2007, 64:1452-1456.
  • [51]Hatzimanolis A, Smyrnis N, Avramopoulos D, Stefanis CN, Evdokimidis I, Stefanis NC: Bipolar disorder ANK3 risk variant effect on sustained attention is replicated in a large healthy population. Psychiatr Genet 2012, 22:210-213.
  • [52]Linke J, Witt SH, King AV, Nieratschker V, Poupon C, Gass A, Hennerici MG, Rietschel M, Wessa M: Genome-wide supported risk variant for bipolar disorder alters anatomical connectivity in the human brain. NeuroImage 2012, 59:3288-3296.
  • [53]Roussos P, Giakoumaki SG, Georgakopoulos A, Robakis NK, Bitsios P: The CACNA1C and ANK3 risk alleles impact on affective personality traits and startle reactivity but not on cognition or gating in healthy males. Bipolar Disord 2011, 13:250-259.
  • [54]Roussos P, Katsel P, Davis KL, Bitsios P, Giakoumaki SG, Jogia J, Rozsnyai K, Collier D, Frangou S, Siever LJ, Haroutunian V: Molecular and genetic evidence for abnormalities in the nodes of Ranvier in schizophrenia. Arch Gen Psychiatry 2011, 69:7-15.
  • [55]Ruberto G, Vassos E, Lewis CM, Tatarelli R, Girardi P, Collier D, Frangou S: The cognitive impact of the ANK3 risk variant for bipolar disorder: initial evidence of selectivity to signal detection during sustained attention. PLoS One 2011, 6:e16671.
  • [56]Lambert S, Bennett V: From anemia to cerebellar dysfunction. A review of the ankyrin gene family. Eur J Biochem 1993, 211:1-6.
  • [57]Otto E, Kunimoto M, McLaughlin T, Bennett V: Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes. J Cell Biol 1991, 114:241-253.
  • [58]Devarajan P, Stabach PR, Mann AS, Ardito T, Kashgarian M, Morrow JS: Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. J Cell Biol 1996, 133:819-830.
  • [59]Kordeli E, Lambert S, Bennett V: AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem 1995, 270:2352-2359.
  • [60]Peters LL, John KM, Lu FM, Eicher EM, Higgins A, Yialamas M, Turtzo LC, Otsuka AJ, Lux SE: Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. J Cell Biol 1995, 130:313-330.
  • [61]Thevananther S, Kolli AH, Devarajan P: Identification of a novel ankyrin isoform (AnkG190) in kidney and lung that associates with the plasma membrane and binds alpha-Na, K-ATPase. J Biol Chem 1998, 273:23952-23958.
  • [62]Bennett V, Healy J: Membrane domains based on ankyrin and spectrin associated with cell-cell interactions. Cold Spring Harb Perspect Biol 2009, 1:a003012.
  • [63]Cunha SR, Mohler PJ: Ankyrin protein networks in membrane formation and stabilization. J Cell Mol Med 2009, 13:4364-4376.
  • [64]Rueckert EH, Barker D, Ruderfer DM, Bergen SE, Theriault KM, Chambert K, Moran J, Purcell S, Madison JM, Haggarty SJ, Sklar P: Cis-acting regulation of brain-specific ANK3 gene expression by a genetic variant associated with bipolar disorder. Mol Psychiatry 2012. [Epub ahead of print]
  • [65]Allen Institute for Brain Science. Allen Brain Atlas Resources [Internet], Seattle, (WA); Copyright 2009. Available from: http://www.brain-map.org webcite
  • [66]Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V: AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J Cell Biol 1998, 143:1295-1304.
  • [67]Yang Y, Ogawa Y, Hedstrom KL, Rasband MN: betaIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinG. J Cell Biol 2007, 176:509-519.
  • [68]Bork P: Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 1993, 17:363-374.
  • [69]Ipsaro JJ, Huang L, Mondragon A: Structures of the spectrin-ankyrin interaction binding domains. Blood 2009, 113:5385-5393.
  • [70]Bouzidi M, Tricaud N, Giraud P, Kordeli E, Caillol G, Deleuze C, Couraud F, Alcaraz G: Interaction of the Nav1.2a subunit of the voltage-dependent sodium channel with nodal ankyrinG. In vitro mapping of the interacting domains and association in synaptosomes. J Biol Chem 2002, 277:28996-29004.
  • [71]Zhang X, Bennett V: Restriction of 480/270-kD ankyrin G to axon proximal segments requires multiple ankyrin G-specific domains. J Cell Biol 1998, 142:1571-1581.
  • [72]Hoock TC, Peters LL, Lux SE: Isoforms of ankyrin-3 that lack the NH2-terminal repeats associate with mouse macrophage lysosomes. J Cell Biol 1997, 136:1059-1070.
  • [73]Ignatiuk A, Quickfall JP, Hawrysh AD, Chamberlain MD, Anderson DH: The smaller isoforms of ankyrin 3 bind to the p85 subunit of phosphatidylinositol 3'-kinase and enhance platelet-derived growth factor receptor down-regulation. J Biol Chem 2006, 281:5956-5964.
  • [74]Pielage J, Cheng L, Fetter RD, Carlton PM, Sedat JW, Davis GW: A presynaptic giant ankyrin stabilizes the NMJ through regulation of presynaptic microtubules and transsynaptic cell adhesion. Neuron 2008, 58:195-209.
  • [75]Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H: Drosophila ankyrin 2 is required for synaptic stability. Neuron 2008, 58:210-222.
  • [76]Pielage J, Fetter RD, Davis GW: A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol 2006, 175:491-503.
  • [77]Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP, Choudhary JS, Grant SG: Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006, 97(Suppl 1):16-23.
  • [78]Nanavati D, Austin DR, Catapano LA, Luckenbaugh DA, Dosemeci A, Manji HK, Chen G, Markey SP: The effects of chronic treatment with mood stabilizers on the rat hippocampal post-synaptic density proteome. J Neurochem 2011, 119:617-629.
  • [79]Elvsashagen T, Moberget T, Boen E, Boye B, Englin NO, Pedersen PO, Andreassen OA, Dietrichs E, Malt UF, Andersson S: Evidence for impaired neocortical synaptic plasticity in bipolar II disorder. Biol Psychiatry 2012, 71:68-74.
  • [80]Lin CY, Sawa A, Jaaro-Peled H: Better understanding of mechanisms of schizophrenia and bipolar disorder: from human gene expression profiles to mouse models. Neurobiol Dis 2012, 45:48-56.
  • [81]Cruceanu C, Alda M, Grof P, Rouleau GA, Turecki G: Synapsin II is involved in the molecular pathway of lithium treatment in bipolar disorder. PLoS One 2012, 7:e32680.
  • [82]Voytovych H, Krivanekova L, Ziemann U: Lithium: a switch from LTD- to LTP-like plasticity in human cortex. Neuropharmacology 2012, 63:274-279.
  • [83]Devarajan P, Stabach PR, De Matteis MA, Morrow JS: Na, K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proc Natl Acad Sci U S A 1997, 94:10711-10716.
  • [84]Weimer JM, Chattopadhyay S, Custer AW, Pearce DA: Elevation of Hook1 in a disease model of Batten disease does not affect a novel interaction between Ankyrin G and Hook1. Biochem Biophys Res Commun 2005, 330:1176-1181.
  • [85]Lasiecka ZM, Winckler B: Mechanisms of polarized membrane trafficking in neurons – focusing in on endosomes. Mol Cell Neurosci 2011, 48:278-287.
  • [86]Shupliakov O, Haucke V: Synaptic Endosomes. Madame Curie Bioscience Database [Internet]. Landes Bioscience, Austin (TX); 2000. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6352/ webcite
  • [87]Boeckeler K, Adley K, Xu X, Jenkins A, Jin T, Williams RS: The neuroprotective agent, valproic acid, regulates the mitogen-activated protein kinase pathway through modulation of protein kinase A signalling in Dictyostelium discoideum. Eur J Cell Biol 2006, 85:1047-1057.
  • [88]Ludtmann MH, Boeckeler K, Williams RS: Molecular pharmacology in a simple model system: implicating MAP kinase and phosphoinositide signalling in bipolar disorder. Semin Cell Dev Biol 2011, 22:105-113.
  • [89]Quiroz JA, Gould TD, Manji HK: Molecular effects of lithium. Mol Interv 2004, 4:259-272.
  • [90]Hedstrom KL, Ogawa Y, Rasband MN: AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J Cell Biol 2008, 183:635-640.
  • [91]Song AH, Wang D, Chen G, Li Y, Luo J, Duan S, Poo MM: A selective filter for cytoplasmic transport at the axon initial segment. Cell 2009, 136:1148-1160.
  • [92]Sobotzik JM, Sie JM, Politi C, Del Turco D, Bennett V, Deller T, Schultz C: AnkyrinG is required to maintain axo-dendritic polarity in vivo. Proc Natl Acad Sci U S A 2009, 106:17564-17569.
  • [93]Yamamoto M, Ueda R, Takahashi K, Saigo K, Uemura T: Control of axonal sprouting and dendrite branching by the Nrg-Ank complex at the neuron-glia interface. Curr Biol 2006, 16:1678-1683.
  • [94]Boiko T, Vakulenko M, Ewers H, Yap CC, Norden C, Winckler B: Ankyrin-dependent and -independent mechanisms orchestrate axonal compartmentalization of L1 family members neurofascin and L1/neuron-glia cell adhesion molecule. J Neurosci 2007, 27:590-603.
  • [95]Brachet A, Leterrier C, Irondelle M, Fache MP, Racine V, Sibarita JB, Choquet D, Dargent B: Ankyrin G restricts ion channel diffusion at the axonal initial segment before the establishment of the diffusion barrier. J Cell Biol 2010, 191:383-395.
  • [96]Hedstrom KL, Xu X, Ogawa Y, Frischknecht R, Seidenbecher CI, Shrager P, Rasband MN: Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J Cell Biol 2007, 178:875-886.
  • [97]Jenkins SM, Bennett V: Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 2001, 155:739-746.
  • [98]Komada M, Soriano P: [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 2002, 156:337-348.
  • [99]Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, Bennett V, Scherer SS, Cooper EC: A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 2006, 26:2599-2613.
  • [100]Rasmussen HB, Frokjaer-Jensen C, Jensen CS, Jensen HS, Jorgensen NK, Misonou H, Trimmer JS, Olesen SP, Schmitt N: Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci 2007, 120:953-963.
  • [101]Sanchez-Ponce D, DeFelipe J, Garrido JJ, Munoz A: In vitro maturation of the cisternal organelle in the hippocampal neuron's axon initial segment. Mol Cell Neurosci 2011, 48:104-116.
  • [102]Galiano MR, Jha S, Ho TS, Zhang C, Ogawa Y, Chang KJ, Stankewich MC, Mohler PJ, Rasband MN: A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 2012, 149:1125-1139.
  • [103]Tapia M, Del Puerto A, Puime A, Sanchez-Ponce D, Fronzaroli-Molinieres L, Pallas-Bazarra N, Carlier E, Giraud P, Debanne D, Wandosell F, Garrido JJ: GSK3 and beta-catenin determines functional expression of sodium channels at the axon initial segment. Cell Mol Life Sci 2012. [Epub ahead of print]
  • [104]Grubb MS, Burrone J: Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 2010, 465:1070-1074.
  • [105]Kuba H, Oichi Y, Ohmori H: Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature 2010, 465:1075-1078.
  • [106]Shirahata E, Iwasaki H, Takagi M, Lin C, Bennett V, Okamura Y, Hayasaka K: Ankyrin-G regulates inactivation gating of the neuronal sodium channel, Nav1.6. J Neurophysiol 2006, 96:1347-1357.
  • [107]Dzhashiashvili Y, Zhang Y, Galinska J, Lam I, Grumet M, Salzer JL: Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. J Cell Biol 2007, 177:857-870.
  • [108]Lambert S, Davis JQ, Bennett V: Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J Neurosci 1997, 17:7025-7036.
  • [109]Zhang Y, Bekku Y, Dzhashiashvili Y, Armenti S, Meng X, Sasaki Y, Milbrandt J, Salzer JL: Assembly and maintenance of nodes of ranvier rely on distinct sources of proteins and targeting mechanisms. Neuron 2012, 73:92-107.
  • [110]Susuki K, Rasband MN: Spectrin and ankyrin-based cytoskeletons at polarized domains in myelinated axons. Exp Biol Med 2008, 233:394-400.
  • [111]Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ: Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell 2004, 119:257-272.
  • [112]Buttermore ED, Piochon C, Wallace ML, Philpot BD, Hansel C, Bhat MA: Pinceau organization in the cerebellum requires distinct functions of neurofascin in Purkinje and basket neurons during postnatal development. J Neurosci: 2012, 32:4724-4742.
  • [113]Guan H, Maness PF: Perisomatic GABAergic innervation in prefrontal cortex is regulated by ankyrin interaction with the L1 cell adhesion molecule. Cereb Cortex 2010, 20:2684-2693.
  • [114]Inda MC, DeFelipe J, Munoz A: Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci U S A 2006, 103:2920-2925.
  • [115]Huang ZJ: Subcellular organization of GABAergic synapses: role of ankyrins and L1 cell adhesion molecules. Nat Neurosci 2006, 9:163-166.
  • [116]Fatemi SH, Folsom TD, Thuras PD: Deficits in GABA(B) receptor system in schizophrenia and mood disorders: a postmortem study. Schizophr Res 2011, 128:37-43.
  • [117]Sibille E, Morris HM, Kota RS, Lewis DA: GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 2011, 14:721-734.
  • [118]Dong E, Nelson M, Grayson DR, Costa E, Guidotti A: Clozapine and sulpiride but not haloperidol or olanzapine activate brain DNA demethylation. Proc Natl Acad Sci U S A 2008, 105:13614-13619.
  • [119]Guidotti A, Auta J, Chen Y, Davis JM, Dong E, Gavin DP, Grayson DR, Matrisciano F, Pinna G, Satta R, et al.: Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 2011, 60:1007-1016.
  • [120]Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo JM, Kuo CT: Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 2011, 71:61-75.
  • [121]David DJ, Wang J, Samuels BA, Rainer Q, David I, Gardier AM, Hen R: Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist 2010, 16:578-591.
  • [122]Sahay A, Hen R: Adult hippocampal neurogenesis in depression. Nat Neurosci 2007, 10:1110-1115.
  • [123]Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G: Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 2004, 24:6590-6599.
  • [124]Fotuhi M, Do D, Jack C: Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 2012, 8:189-202.
  • [125]Santuccione AC, Merlini M, Shetty A, Tackenberg C, Bali J, Ferretti MT, McAfoose J, Kulic L, Bernreuther C, Welt T, et al.: Active vaccination with ankyrin G reduces beta-amyloid pathology in APP transgenic mice. Mol Psychiatry 2012. [Epub ahead of print]
  • [126]Detera-Wadleigh SD, Akula N: A systems approach to the biology of mood disorders through network analysis of candidate genes. Pharmacopsychiatry 2011, 44(Suppl 1):S35-S42.
  • [127]Quiroz JA, Machado-Vieira R, Zarate CA: Manji HK: Novel insights into lithium's mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology 2010, 62:50-60.
  • [128]Aspberg A, Miura R, Bourdoulous S, Shimonaka M, Heinegard D, Schachner M, Ruoslahti E, Yamaguchi Y: The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Proc Natl Acad Sci U S A 1997, 94:10116-10121.
  • [129]Maniar TA, Kaplan M, Wang GJ, Shen K, Wei L, Shaw JE, Koushika SP, Bargmann CI: UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nat Neurosci 2012, 15:48-56.
  • [130]Zallen JA, Kirch SA, Bargmann CI: Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 1999, 126:3679-3692.
  文献评价指标  
  下载次数:3次 浏览次数:13次