会议论文详细信息
8th International Congress of Engineering Physics
Inverse problem of HIV cell dynamics using Genetic Algorithms
物理学;工业技术
González, J.A.^1 ; Guzmán, F.S.^1
Laboratorio de Inteligencia Artificial y Supercómputo, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico^1
关键词: Cell concentrations;    Cell dynamics;    Mutation rates;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/792/1/012070/pdf
DOI  :  10.1088/1742-6596/792/1/012070
学科分类:工业工程学
来源: IOP
PDF
【 摘 要 】

In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

【 预 览 】
附件列表
Files Size Format View
Inverse problem of HIV cell dynamics using Genetic Algorithms 318KB PDF download
  文献评价指标  
  下载次数:22次 浏览次数:41次