The studies of the dynamics, phase behavior, interparticle interactions, and hydrodynamics of stimuli-responsive pNIPAm-co-AAc microgels were described in this thesis. Due to their responsiveness to external stimuli, these colloidal particles serve as excellent model systems to probe the relationship between colloidal interactions and phase behavior. As a first step, we established our core experimental methodology, by demonstrating that particle tracking video microscopy is an effective technique to quantify various parameters in colloidal systems. Then we used the technique in combination with a microfluidic device that provides in situ control over sample pH to probe the phase behavior of pNIPAm-co-AAc microgel suspensions. In essence, the experimental set-up enables changes in effective particle volume fractions by changing pH, which can be used to construct the phase diagram. In order to explain the unique features of the microgel phase diagram, we measured the underlying pairwise interparticle potential of pNIPAm-co-AAc microgels directly in quasi-2D suspension and proved that the interactions are pH dependent and can range from weakly attractive to soft repulsive. Finally, the hindered Brownian diffusion due of colloidal particles confined by hard walls was investigated systematically and striking differences between hard sphere and soft sphere were found, with soft pNIPAm-co-AAc microgels showing surprising mobility even under strong confinement.
【 预 览 】
附件列表
Files
Size
Format
View
The dynamics and phase behavior of suspensions of stimuli-responsive colloids