学位论文详细信息
Extreme scale data management in high performance computing
Adaptive;File systems;HPC;IO;Storage
Lofstead, Gerald Fredrick ; Computing
University:Georgia Institute of Technology
Department:Computing
关键词: Adaptive;    File systems;    HPC;    IO;    Storage;   
Others  :  https://smartech.gatech.edu/bitstream/1853/37232/1/lofstead_gerald_f_201012_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Extreme scale data management in high performance computing requires consideration of the end-to-end scientific workflow process. Of particular importance for runtime performance, the write-read cycle must be addressed as a complete unit. Any optimization made to enhance writing performance must consider the subsequent impact on reading performance. Only by addressing the full write-read cycle can scientific productivity be enhanced.The ADIOS middleware developed as part of this thesis provides an API nearly as simple as the standard POSIX interface, but with the flexibilty to choose what transport mechanism(s) to employ at or during runtime. The accompanying BP file format is designed for high performance parallel output with limited coordination overheads while incorporating features to accelerate subsequent use of the output for reading operations. This pair of optimizations of the output mechanism and the output format are done such that they either do not negatively impact or greatly improve subsequent reading performance when compared to popular self-describing file formats. This end-to-end advantage of the ADIOS architecture is further enhanced through techniques to better enable asychronous data transports affording the incorporation of 'in flight' data processing operations and pseudo-transport mechanisms that can trigger workflows or other operations.

【 预 览 】
附件列表
Files Size Format View
Extreme scale data management in high performance computing 2602KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:39次